
Mixin’ Up the ML Module System

Derek Dreyer Andreas Rossberg
Max Planck Institute for Software Systems (MPI-SWS)

{dreyer,rossberg}@mpi-sws.mpg.de

Abstract
ML modules provide hierarchical namespace management, as well
as fine-grained control over the propagation of type information,
but they do not allow modules to be broken up into separately com-
pilable, mutually recursive components. Mixin modules facilitate
recursive linking of separately compiled components, but they are
not hierarchically composable and typically do not support type
abstraction. We synthesize the complementary advantages of these
two mechanisms in a novel module system design we call MixML.
A MixML module is like an ML structure in which some of the
components are specified but not defined. In other words, it uni-
fies the ML structure and signature languages into one. MixML
seamlessly integrates hierarchical composition, translucent ML-
style data abstraction, and mixin-style recursive linking. Moreover,
the design of MixML is clean and minimalist; it emphasizes how all
the salient, semantically interesting features of the ML module sys-
tem (as well as several proposed extensions to it) can be understood
simply as stylized uses of a small set of orthogonal underlying con-
structs, with mixin composition playing a central role.

1. Introduction
ML modules and mixin modules are two well-known and influential
mechanisms for modular programming that have largely comple-
mentary advantages and disadvantages. In this paper, we show how
to synthesize some of the defining aspects of these mechanisms in
the design of a novel module system we call MixML.

We begin by reviewing some of the main features and draw-
backs of ML modules and mixin modules.

1.1 ML Modules
Proposed originally by MacQueen [22] in the mid-1980s and de-
veloped further by Harper, Leroy, and many others [14, 19, 10],
the ML module system offers powerful support for flexible pro-
gram construction, data abstraction, and code reuse. In ML, struc-
tures provide namespace management, signatures describe module
interfaces, functors enable the definition of generic modules, and
opaque signature ascription (aka sealing) lets one hide the imple-
mentation details of a module behind an interface.

One important feature of ML modules is that they are hierarchi-
cally composable. Structures may contain other structures as com-
ponents, and thus be used to build hierarchical namespaces. An-
other important feature is that ML modules may contain both dy-

[Copyright notice will appear here once ’preprint’ option is removed.]

namic components, defined by core-ML terms, and static compo-
nents, defined by core-ML types. The packaging together of types
and terms, along with the opaque sealing construct, allows modules
to express abstract data types. Furthermore, signatures are translu-
cent [14], i.e., they can specify type components of modules ei-
ther abstractly or transparently. Translucency gives the programmer
fine-grained control over the propagation of type information.

However, one major limitation of ML modules (at least tradi-
tionally) is that they cannot be defined recursively, thus inhibiting
the decomposition of mutually recursive functions and data types
into modular components. Consequently, in the last decade, there
have been several proposals for extending ML with recursive mod-
ules [6, 32, 21, 25, 7]. While the existing proposals address a va-
riety of interesting issues, such as the interaction of recursion and
data abstraction [6, 7], none of them provides adequate support for
something we view as a central design goal: separate compilation.
Half the motivation for recursive modules is the desire to break big
modules into smaller components that can be compiled indepen-
dently of one another and linked with multiple different implemen-
tations of the other components. Yet, except in restricted cases, this
functionality is not accounted for by any of the existing proposals.

We believe that the reason existing proposals have failed to sup-
port general separate compilation of mutually recursive modules
is that ML’s traditional means of supporting separate compilation
and hierarchical (i.e., non-recursive) linking—namely, functors—
do not scale well to the recursive case. The body of a functor (which
defines its exports) may depend on its argument (which specifies
its imports), but not vice versa. In the context of recursive mod-
ules, however, the import specifications of a separately-compiled
module may in general need to refer recursively to abstract type
components provided in its exports. Unfortunately, it is not obvi-
ous how to generalize the functor mechanism in a simple way in
order to permit the argument to depend on the result.

1.2 Mixin Modules
Although the concept of mixins originated in work on Common
LISP from the mid-1980s [24], Bracha and Cook [4] were the first
to propose mixins as an actual language construct (in their case, as
an extension to Modula-3). Since then, mixins have appeared in a
variety of different languages, under a variety of different names,
meaning a variety of different (albeit related) things.

In the context of Bracha and Cook’s pioneering work, as well
as most subsequent object-oriented instances of mixins, a mixin
is an abstract subclass (their terminology), i.e., a subclass that is
parameterized over an abstract specification of its superclass and
can be instantiated to extend multiple different superclasses.

The other common meaning of mixins, which is less specific to
object-oriented programming and is the one we are primarily in-
terested in for the purposes of this paper, is also due to Bracha,
in particular his work with Lindstrom on the Jigsaw language [5].
Jigsaw’s central construct is actually not called a mixin, but rather
a module. Jigsaw modules may contain both defined components

1 2008/4/2

(i.e., exports) and declared components (i.e., imports). The lan-
guage provides a suite of operators for adapting and combining
modules. Of particular note is the merge operator, which takes as
input two modules, M1 and M2, and returns a module M such that

1. exports(M) = exports(M1)] exports(M2)

2. imports(M) = imports(M1)∪imports(M2)−exports(M)

Here,] denotes that the exports of M1 and M2 must be disjoint.
In addition, the typing rule for the merge operator checks that any
components with the same name in M1 and M2 have compatible
types (for some suitable definition of “compatible”, e.g., the types
are equal, or one is a subtype of the other).

While the merge operator does not permit M1 and M2 to have
overlapping exports, Bracha provides a separate override operator
that does, choosing the export from M2 over the export from M1

in case of an overlap. In some later versions of mixins, a variant
of the override operator, not the merge operator, is adopted as
the default notion of mixin composition. Moreover, support for
overriding (and “late binding”) is often considered a central feature
of mixins. Be that as it may, for the remainder of this paper we will
use the term mixin composition to mean Bracha’s merge operator.
Following mixin-based languages like Flatt et al.’s units [13, 29]
and Duggan’s recursive DLLs [11], our MixML language does not
attempt to support any form of overriding.

The work on Jigsaw has inspired a significant amount of re-
search into mixin module systems. Over the course of several pa-
pers [3, 2, 1], Ancona and Zucca have explored in depth the seman-
tic properties and algebraic laws of mixin operators, and developed
a foundational mixin module calculus called CMS, which refactors
some of the Jigsaw primitives. While CMS is a pure call-by-name
language, it has been extended with support for call-by-value eval-
uation [16] and monadic effects [1].

Compared with ML modules, a key advantage of mixin mod-
ules is that the mixin composition of modules M1 and M2 is by
definition a kind of recursive linking, in which the exports of each
module are used to satisfy the imports of the other. Mixin mod-
ules thus appear to offer a natural solution to the problems with
separate compilation of recursive modules in ML. One major lim-
itation of Bracha/CMS-style modules, however, is that they con-
tain only term components, not type components, which means that
they cannot express ML-style abstract data types, let alone translu-
cent signatures. This has led a number of researchers to consider
ways of combining the support for type abstraction found in ML
modules with the support for separate compilation and recursive
linking found in mixin modules [13, 11, 28, 29].

1.3 Motivation
The motivation for this paper is that the existing proposals for
synthesizing ideas from ML modules and mixin modules (which
we will discuss in detail in Section 5) are all lacking in one key
respect: none of them allows for a simple and direct encoding of
all the salient, semantically interesting features of the ML module
system. For example, Owens and Flatt [29] give an encoding of an
ML-like module calculus into their unit language, but it depends
critically on the impractical assumption that the ML programs
being encoded have (redundant) signature annotations on nearly
every subexpression. Odersky et al.’s Scala language [28], while
highly expressive in its support for OO-style extensibility, does
not support opaque signature ascription—i.e., the ability to seal a
module (or class) ex post facto behind an abstract interface—which
is a central feature of the ML module system. Ideally, we would
like a language that seamlessly integrates mixin composition into
ML without sacrificing any key features of ML modules.

1.4 MixML
In this paper, we present a novel foundational module system,
called MixML, which incorporates at a deep level the mechanism
of mixin module composition, while retaining the full expressive
power of ML modules.

The main idea of MixML is simple: the MixML module lan-
guage unifies ML’s structure and signature languages into one. That
is, a MixML module may contain both type and term definitions, of
the kind found in ML structures, as well as type and term specifi-
cations, of the kind found in ML signatures. It is not required to
contain only definitions or only specifications; rather, it may freely
mix them. Thus, traditional ML structures and ML signatures may
be viewed as endpoints on the spectrum of MixML modules.

Why is MixML’s unification of structures and signatures useful?
Because it enables us to encode a wide variety of features directly
as stylized uses of a small set of orthogonal underlying constructs,
thus simplifying and regularizing the design of the language. In
particular:

1. MixML provides a unifying account of several pairs of lan-
guage features that are usually modeled as extensions to both
the structure and signature languages of ML. Concretely, for
each of the following pairs of features, MixML supports both
features via a single encoding:
• hierarchical structures and hierarchical signatures
• recursive structures and recursively dependent signatures
• functors and parameterized signatures

2. A variety of features that are typically supported via distinct
mechanisms may be encoded in MixML as idiomatic uses of
mixin composition, i.e., (recursive) linking. These include:
• recursive module definitions
• signature inheritance (include)
• signature refinement (with/where/sharing type)
• signature ascription, opaque (:>) and transparent (:)
• functor application

The encodings of these features involve the linking of two
MixML modules, one or both of which represents an ML signa-
ture. These encodings are made possible by the fact that struc-
tures and signatures are just different kinds of MixML modules,
and any two modules can be linked together so long as they are
compatible (in a sense we make precise later in the paper).

1.5 Technical Contributions
If the basic design idea of MixML is as simple and powerful as we
claim, the reader may wonder why it has not been proposed before.
We believe the reason is that the feasibility of the idea is dependent
on several novel enhancements to mixin module semantics that we
set forth in this paper, as well as a generalization of some recent
work on handling the “double vision” problem in the context of
recursive ML-style modules. We briefly summarize these technical
contributions here.

Hierarchical Composability Suppose M1 and M2 are ML struc-
tures, each of signature

sig val x : int; val y : int end

One can compose them hierarchically to form a new structure
containing both:

module M = struct
module A1 = M1; module A2 = M2

end

2 2008/4/2

If M1 and M2 were mixin modules, each with x as an import and y
as an export, we might wish to hierarchically compose them in the
same way, with the result being a new mixin module M, with imports
A1.x and A2.x, and exports A1.y and A2.y. Yet, in previous CMS-
style mixin module systems, hierarchically composing two mixins
to form another mixin is not possible. The reason is that CMS-style
systems employ a flat namespace for their imports and exports—
pathnames like A1.x are disallowed.

Hierarchical composability, which MixML modules support,
allows us to use a single namespace mechanism to build hierarchies
of structures, signatures, or modules that are a mixture of both.
Without it, we would be unable to provide a unified representation
of hierarchical structures and signatures.

Unifying Linking and Binding In previous systems, the mixin
composition of two modules does not provide a way for either of
the modules to refer directly to components of the other. In other
words, the linking operator is not a variable binder; instead, binding
is typically built into other constructs.

In MixML, we take a different tack by making the linking
operator the only binding construct. This enables us to (1) model
all forms of binding in ML modules as stylized uses of linking,
and (2) achieve very simple encodings of several features, such as
recursive modules and sharing type specifications. The benefit
of unifying linking and binding will be borne out by a number of
examples in Section 2.

Cross-Eyed Double Vision A key problem that arises when ex-
tending ML with recursive modules is double vision [6, 7], which
concerns the interaction of recursion and opaque signature ascrip-
tion. As MixML modules subsume the functionality of recursive
ML modules, double vision is an issue for MixML as well. In fact,
since mixin composition is essentially a bidirectional generaliza-
tion of ML-style signature matching, the MixML type system must
handle a “cross-eyed” version of the double vision problem.

Fortunately, in recent work, Dreyer [7, 9] has shown how to
solve the double vision problem for recursive ML modules, and
this solution can be generalized quite easily to handle the cross-
eyed double vision problem for MixML modules. We describe the
problem and its solution by example in Section 3, and provide full
formal details of the solution in Section 4.

1.6 Overview
The rest of the paper is structured as follows. In Section 2, we
present the syntax of MixML and lead the reader on a tour of the
language by example. In Section 3, we explore several technical is-
sues that the MixML type system must address, including the dou-
ble vision problem and the handling of cyclic definitions. In Sec-
tion 4, we give the formal definition of the MixML type system, in
particular the static semantics. (Due to space limitations, we omit
most details concerning the dynamic semantics and type sound-
ness proof, and refer the interested reader to the supplementary ap-
pendix.) Finally, in Section 5, we offer a detailed comparision with
related work, and conclude with directions for future work.

2. A Tour of MixML
The syntax of MixML is displayed in Figure 1.

In a MixML module, some components may be defined (the
exports), and some may have a kind or type specification but are
not defined (the imports). The import components of a module can
be viewed as requirements that will be fulfilled in the future when
the module is linked with other modules. Thus, the MixML type
system insists that no module operator be permitted to remove the
imports of a module from scope (e.g., by the use of data abstrac-
tion), as one should not be allowed to forget about a requirement.
In contrast, exports may always be hidden.

Kinds K ∈ N
Type Var’s α, β ∈ TyVars × N
Module Var’s X,Y ∈ ModVars
Labels ` ∈ Labs
Label Paths `s ::= ε | `.`s ∈ Paths
Type Constr’s tyc ::= Tyc(mod) |

α | λ(α).tyc | tyc(tyc) | . . .
Terms exp ::= Val(mod) | . . .
Modules mod ::= X | {} | [:tyc] | [exp] |

[:K] | [tyc] |
{`= mod} | mod .` |
(X = mod1) with mod2 |
(X = mod1) seals mod2 |
[mod] | new mod

mod1 with mod2
def
= (X = mod1) with mod2

mod1 seals mod2
def
= (X = mod1) seals mod2

where X 6∈ FV(mod2)

Figure 1. MixML Syntax

Types and Terms Following Leroy [20], we define our module
language to be largely agnostic with respect to the details of the
core language. Of the term language we expect only that it contains
a term projection construct Val(mod), which takes an atomic term
module mod (i.e., a module containing a single term component)
and projects out the term. Similarly, we assume that the type lan-
guage contains a type projection construct Tyc(mod), which takes
an atomic type module mod (i.e., a module containing a single type
component) and projects out the type. For brevity, we will typically
omit the explicit Tyc and Val projections in examples when their
necessity is clear from context.

We also assume that the type language contains ML-style type
constructors, which take a list of type arguments (the notation α
denotes a list of 0 or more α’s, separated by commas) and return
a single type as a result. The kind of a type constructor is its arity,
i.e., the number of type arguments it has. Types classifying terms
have kind 0.

Atomic Modules Atomic modules are modules containing a sin-
gle (type or term) component, and that component may be either
specified (i.e., an import) or defined (i.e., an export). Whereas, in
ML, definitions only occur in modules, and specifications only oc-
cur in signatures, in MixML both definitions and specifications are
module constructs.

The module [:tyc] represents a term specification of type tyc.
The module [exp] represents a term component defined to be the
value resulting from the evaluation of exp. The module [:K] rep-
resents an abstract type specification of kind K. The module [tyc]
represents a transparent definition of a type component equal to
tyc. Note that, in ML, there is a distinction between transparent
type definitions, which appear in modules, and transparent type
specifications, which appear in signatures. In MixML, these mech-
anisms are unified into one.

Unary Namespaces and Projection The construct {} denotes an
empty module, containing no components. The module {`= mod}
introduces a namespace containing a single component named `,
whose definition is mod . Any imports (resp. exports) of mod
become imports (resp. exports) of {`= mod} as well, except the
pathnames of those imports (resp. exports) now have “`.” in front
of them. Thus, MixML modules are hierarchically composable.

3 2008/4/2

The constructs we have discussed so far can be combined to give
a direct encoding of ML-style type/term definitions/specifications:

val v : tyc
def
= {v= [:tyc]}

val v = exp
def
= {v= [exp]}

type (α1, . . . , αn) t
def
= {t= [:n]}

type (α) t = tyc
def
= {t= [λ(α).tyc]}

Dual to {`= mod} is the construct mod .`, which projects the
` component from the module mod . The typing rule for mod .`
insists that any imports mod may have must be contained in the `
component. This guarantees that no import requirements of mod
are dropped when we project out the ` component.

At the moment, all we have are unary namespaces. In order to
support n-ary structures and signatures of the sort found in ML, we
now present MixML’s most versatile construct—linking.

Linking The linking module construct (X = mod1) with mod2

is MixML’s primary means of composing multiple modules to-
gether. Linking does several things:

• It performs mixin composition of mod1 and mod2 in the style
of Bracha’s merge operator, assuming they are compatible.

• It sequences effects. Any definitions of term components in
mod1 will be evaluated prior to any such definitions in mod2.

• It is the only means of variable binding in the language. It binds
X as a representative of mod1 inside mod2.

Compatibility of mod1 and mod2 reduces to compatibility of their
atomic components. For each component of the same pathname in
both modules, compatibility is defined informally as follows:

• If the component is an import in mod1 and an export in mod2,
then mod2’s export must match the import spec from mod1.
(And vice versa, if the component is an export in mod1 and an
import in mod2.)

• If the component is a term import in both modules, and has
specification tyc1 in mod1 and tyc2 in mod2, then either tyc1

must be a subtype of tyc2 (for some notion of core subtyping,
e.g., polymorphic instantiation) or vice versa, and whichever
type is stronger is the one propagated as the specification of the
component in the linked module.

• If the component is a type import in both modules, they must
both specify it to have the same kind.

• If the component is a type export in both modules, they must
both define it to be the same type.

• The component may not be a term export in both modules.

Before exploring the recursive aspects of linking, we first show
how it may be used to express n-ary non-recursive structures and
signatures, as well as several other non-recursive features.

n-ary Structures and Signatures While, in ML, components of
a structure or signature are for convenience only assigned a sin-
gle name, most type-theoretic accounts of the ML module system
employ a label-variable distinction [14] (or the equivalent [19]).
This divides the name of each component into a label `, which
is unchangeable and is used as the “external” name of the com-
ponent, and a variable X, which is alpha-convertible and is used
as the “internal” name of the component within subsequent defini-
tions/specifications of the structure/signature. Under this approach,
an n-ary structure can be modeled as

{`1 .X1 = mod1, . . . , `n .Xn = modn}
where each Xi is bound in the subsequent modj’s to the result of
evaluating mod i. (In ML, `i and Xi must be the same identifier.)

The encoding of an n-ary structure defines it as the linking of n
disjoint unary structures (we assume here that X is suitably fresh):

{`1 .X1 = mod1, . . .}
def
=

(X = {`1 = mod1}) with {. . .}[X.`1/X1]

Inside the linking, X stands for the unary structure containing
just the `1 component. In the encoding of the remainder of the
components (. . .), we must therefore replace references to X1 with
X.`1. (Note that we assume here for simplicity that all the `i
are distinct labels. There are well-known ways of allowing for
shadowing [15], but they are beyond the scope of this paper.)

Typically, ML module type systems model n-ary signatures in
a similar fashion to n-ary structures (yet as a distinct construct):

{`1 .X1 : sig1, . . . , `n .Xn : sign}
However, since ML signatures are encoded in MixML as modules
(i.e., a sig is just a module with no term exports), the encoding of
n-ary signatures is exactly the same as for n-ary structures:

{`1 .X1 : sig1, . . .}
def
=

(X = {`1 = sig1}) with {. . .}[X.`1/X1]

We just change the colons to equal signs: wherever you see X : sig
in ML code, expect to see X = sig in its MixML encoding. As
we will show, this maxim applies to all instances of structure
specification in ML, not just substructure specifications.

Local Module Definitions Using the above encoding of n-ary
namespaces, we can easily encode a let construct that enables the
definition of local modules. The encoding makes use of two labels,
`1 and `2, which are arbitrary:

let X = mod1 in mod2
def
= {`1 .X = mod1, `2 = mod2}.`2

The two modules mod1 and mod2 are combined through hierarchi-
cal composition into a pair module, from which the second compo-
nent `2 is then projected out. Since this has the effect of hiding
mod1, the MixML type system will insist that mod1 be complete,
i.e., that it have no imports. This is a useful property to be able to
enforce. Thus, in general, if we wish to check that a module mod
is complete, we can do so by just let-expanding it:

let X = mod in X

Signature Inheritance In ML, one may define a signature that
inherits specifications from an existing signature sig and adds new
specifications to it. This is supported by the include mechanism:

sig include sig; <newspecs > end

MixML supports signature inheritance through linking. To add
<newspecs > to sig , we can write

(X = sig) with {<newspecs >}
(Note that in our encoding, in order for <newspecs > to refer to the
components specified in sig , it must project them from X.)

In fact, linking is more flexible than include because include
does not permit multiple inheritance from overlapping signatures.
For instance, if sig1 and sig2 both contain specifications of a type
component (named t in both signatures), together with several
operations over values of that type, it is prohibited to write

sig include sig1; include sig2 end

due to the overlapping t specs. With linking, though, we can write

sig1 with sig2

and mixin composition will permit overlapping specs in sig1 and
sig2 so long as they are compatible (which in this case they are).
A similar approach to multiple signature inheritance is offered by

4 2008/4/2

Ramsey et al.’s andalso signature combinator [30], but in our
case the added functionality falls out directly from the semantics
of mixin linking.

ML also provides an open mechanism for structure inheritance.
If open were a non-shadowing operation like signature include,
the encoding of include would double as an encoding of open
(replacing the sig’s above with mod ’s). However, unlike signa-
ture inclusion, open is permitted to shadow earlier bindings. As
mentioned above, we believe it should be straightforward to extend
MixML with support for shadowing using known techniques [15].

Signature Refinement Mixin linking can also be used to define a
very simple encoding of ML’s with type (or where type) mech-
anism for adding type definitions to signatures. The ML construct

sig with type (α) t = tyc

can be modeled (quite directly!) as a form of linking:

sig with type (α) t = tyc

where “type (α) t = tyc” is encoded as on the previous page.
Mixin linking will use the definition for t on the right side of the
with (i.e., λ(α).tyc) to fill in the abstract specification for t in sig .
It is also easy to encode the more general form of with type in
which t can be a path `1. · · · .`n, using the following definition:

type (α) `1.`s = tyc
def
= {`1 = (type (α) `s = tyc)}

In fact, though, the above encoding is not entirely faithful to
the original ML semantics of with type: if the type component
t does not appear in sig at all, then the encoding will not report
a type error (as ML semantics would dictate it should), but rather
simply add “type (α) t = tyc” to sig . If we want to match ML
semantics more precisely, we need to first check that sig contains a
specification for the type t. This can be achieved by replacing sig
in the above encoding with sig matches type (α) t, where the
matches mechanism is encoded as follows:

sig1 matches sig2
def
=

{`1 .X = sig1, `2 = X with sig2}.`1
The projection of `1 here means that: (1) if the encoding is well-
typed, then sig1 matches sig2 is indistinguishable from sig1, and
(2) the encoding will only be well-typed if the hidden module
labeled `2 is complete (no imports). This second condition implies
that the imports of sig2 (i.e., its value and abstract type specs)
must be satisfied by linking with X—i.e., X’s signature sig1 must
actually match sig2.

Type Sharing Constraints If sig contains two abstract type com-
ponents u and t, and we wish to refine the signature so that t is
transparently equal to u, the traditional ML with type construct
does not permit us to do so because u is not a valid type outside
the signature. Standard ML retains a second signature refinement
operator, sharing type, precisely to make up for this deficiency.

In MixML, we can encode sharing type very easily by ex-
ploiting the ability to bind sig to a variable while we refine it. That
is, in order to refine sig so that t equals u, we can write

(X = sig) with type t = X.u

We use X here to provide t’s definition with a way of referring
to the u component from sig . This is similar to a proposal of
Ramsey et al. [30], but in our case the added functionality falls
out directly from our unification of linking and binding.

Recursive Structures Another feature for which the unification
of linking and binding facilitates a very simple encoding is the
recursive structure definition. Recursive structure extensions to ML
typically have the form:

rec (X : sig) mod

Here, X is the variable by which mod refers to itself recursively,
and sig is the forward declaration, a kind of template for mod ,
which serves as the signature of X during the typechecking of mod .

The encoding of this construct in MixML is extremely simple:

(X = sig) with mod

Mixin linking will use the type definitions (type exports) of mod to
fill in the corresponding abstract type specifications (type imports)
of sig , and then check that the term definitions (term exports) of
mod match the types from the corresponding term specifications
(term imports) of sig . The binding of X inside mod gives mod a
way of referring to its own components (at least those specified in
sig) recursively. Note also that this is another instance of our rule:
Just change the colons to equal signs—X : sig becomes X = sig .

One thing this encoding will not do in its present form is ensure
that all the components forward-declared in sig actually get defined
by mod . Any components that mod fails to define will just remain
imports in the result of the linking. To ensure completeness, though,
we can simply let-expand the encoding, as explained above.

Recursively Dependent Signatures All the existing recursive
module proposals for ML also extend the signature language with
a new construct called a recursively dependent signature [6]. In
Russo’s extension to Moscow ML [32], it takes the form:

rec (X : sig1) sig2

This construct allows the signatures of mutually recursive mod-
ules (in sig2) to refer recursively to each other’s type components
through the variable X. Of course, since structures and signatures
are both encoded in MixML as modules, this construct is encoded
in the exact same way as the recursive structure construct:

(X = sig1) with sig2

One point of note is that not all recursive module extensions to
ML require the programmer to write down sig1. Instead, they
infer it from sig2. We view such an inference step as a separable
convenience. In any case, this encoding demonstrates that recursive
structures and recursively dependent signatures can be understood
as one and the same feature.

Opaque Signature Ascription as Opaque Linking None of the
MixML constructs described thus far supports the creation of ab-
stract data types. For this purpose MixML includes a second vari-
ant of the linking construct—(X = mod1) seals mod2—which
we call opaque linking (as opposed to the original form, which we
view as transparent linking).

Opaque linking is very similar to transparent linking, except:

• The only information that the rest of the program may know
about the result of opaque linking is what it can tell from look-
ing at mod1—no information about mod2 may be revealed.

This property implies several things. First, mod2 must define all of
mod1’s imports. If it only defined some of them, we would have
no way of knowing which ones it defined without looking at it (and
thus violating data abstraction). Second, the type imports of mod1

will become abstract type exports of the linked module. Third, the
exports of the linked module are limited to those components either
specified (imports) or defined (exports) in mod1. Thus, since all of
mod1’s imports are fulfilled by mod2, the result of opaque linking
is always a complete module.

Using opaque linking, we arrive at a simple encoding of ML’s
sealing (or opaque signature ascription) construct. Specifically:

mod :> sig
def
= sig seals mod

Functors as Units So far we have not introduced any means of
suspending a module in the manner of an ML functor. To support

5 2008/4/2

this important feature, we introduce a new atomic module construct
we call a unit. (As we explain in Section 5, our units are inspired
by Flatt et al.’s units [13, 29], but are different in many respects.)

A unit, written [mod], is a suspension of the module mod .
With units we can encode an ML functor (modeled here by a
module-level λ-expression) as follows:

λ(X:sig).mod
def
= [{Arg .X = sig , Res= mod}]

In other words, a functor is just a suspension of a module with one
component Arg whose term (and possibly type) components are
undefined, and one component Res that is fully defined. (Note how
the argument binding X : sig is encoded as X = sig , yet another
application of the rule of changing colons to equal signs.)

The elimination construct for units is written new mod . Here,
mod is assumed to be a unit, and new mod has the effect of
instantiating that unit by producing a fresh copy of its constituent
module, which can then be linked with other modules that satisfy
its imports. For example, suppose that the variable F has been
bound to the functor expression shown above. Application of F to
an argument mod is encoded as follows:

F(mod)
def
= ({Arg= mod} with new F).Res

The reason we put new F on the r.h.s. of the linking is to ensure
that the term definitions in mod are evaluated before the term
definitions in the body of F, which may depend on them.

Every instantiation of a unit F generates a distinct instance of
the module expression contained within F. In particular, each oc-
currence of new F will re-evaluate the term definitions in F’s con-
stituent module and generate fresh abstract types corresponding to
said module’s abstract type exports. In this respect, unit instanti-
ation is much like generative functor application in Standard ML.
We do not currently model the applicative behavior of functors in
OCaml [18], which we leave to future work.

Transparent Signature Ascription In addition to opaque signa-
ture ascription, Standard ML includes a mechanism for transparent
signature ascription, written mod : sig , which narrows the exports
of mod to those specified in sig but does not perform any type ab-
straction. It is well-known that transparent ascription with signature
sig can be encoded as an application of the identity functor at sig :

mod : sig
def
= (λ(X:sig).X)(mod)

Parameterized Signatures Jones [17] proposed the idea of pa-
rameterized signatures, i.e., signatures parameterized over module
arguments. Although it has been argued that ordinary ML signa-
tures subsume the expressiveness of parameterized signatures, we
merely wish to point out here that parameterized signatures are
directly encodable in MixML via the exact same encoding as for
functors. Just instantiate mod in λX:sig .mod with the MixML rep-
resentation of an ML signature. Functors and parameterized signa-
tures are one and the same thing.

Signature Bindings In addition to modeling parameterized struc-
tures/signatures, units can be used to model ML’s signature bind-
ings. Suppose sig is an ML signature encoded as a MixML module,
and that we wish to bind it to a signature variable S (to use as short-
hand for sig in subsequent code). It would be incorrect to bind S to
sig directly: S = sig is the MixML encoding of the ML structure
specification S : sig , so if S were defined that way, later references
to it would be references to a particular structure of signature sig .
In order to define S to be the signature sig , we bind S to the unit
[sig] and replace all subsequent uses of S with new S. This works
because each reference to new S will produce a fresh copy of sig ,
whose imports may then be instantiated independently. Since ML
signatures do not contain term definitions, performing new on a sig-
nature variable will never have any computational effects.

Separate Compilation of Recursive Modules At the start of the
paper, the main criticism we gave of ML modules was that they do
not support separate compilation of mutually recursive modules. In
MixML, this functionality is provided by units.

Suppose we wish to define two modules named A and B, with
signatures sigA and sigB, and definitions modA and modB, which
refer recursively to themselves and to each other through the mod-
ule variable X. Let the signature variable S be bound to the unit

[(X = . . .) with {A= sigA, B= sigB}]
where . . . is a signature specifying the type components of A and
B that sigA and sigB need to refer to recursively. Were we to write
A’s and B’s definitions together, the MixML code would be:

(X = new S) with {A= modA, B= modB}
But there is no need to define A and B together. We can, separately,
bind UA to

[(X = new S) with {A= modA}]
and UB to

[(X = new S) with {B= modB}]
The units UA and UB represent the separately compiled versions of A
and B, respectively. UA exports definitions for the components of A,
but leaves B’s components as imports, and UB is vice versa. Finally,
when we want to link them we simply write:

new UA with new UB

Of course, there is nothing requiring us to link UA and UB in this
order or with each other. They are completely independent program
units that can link with any other compatible units.

Higher-Order Units With the constructs presented so far, units
can only be defined and exported from other units. If we wish to
support the expressiveness of higher-order functors (functors that
take functors as arguments—a feature in many dialects of ML),
then the language must also support unit imports. In order to encode
unit imports, it is necessary to extend MixML with a notion of unit
signature, analogous to the notion of functor signature in higher-
order module extensions to ML. Due to space limitations, and
because this feature is completely orthogonal to all the others we
have described so far, we omit discussion of higher-order units. Full
details appear in the supplementary appendix.

3. Challenges in Typing MixML
The combination of recursive mixin composition with abstract type
components and sealing raises a number of technical challenges. In
this section we informally discuss the central problems that arise
in typing MixML. The solutions we employ are mostly generaliza-
tions of the techniques developed by Dreyer for typing recursive
modules [7].

Bidirectional Type Lookup In ML, matching a structure mod
against a signature sig is a two-step procedure. First, for each type
component specified abstractly in sig , we look up its definition in
mod , and reify its specification in sig appropriately (i.e., make its
specification transparently equal to its definition in mod). We then
check that the specification of each (type or value) component in
the reified sig is matched by its corresponding definition in mod .

To see why this two-step process is necessary, consider:

struct type t = int; val x = 3 end
:>

sig type t; val x : t end

Checking whether 3 has type t will fail unless we first reify the
specification of t to its underlying definition, type t = int.

6 2008/4/2

In MixML, we no longer explicitly distinguish structures from
signatures. Linking effectively generalizes unidirectional matching
to bidirectional merging of two modules, which may both contain
abstract type components. Consequently, reification (type lookup)
must be performed in both directions simultaneously. Consider:8<:t . t1 = [int],

u . u1 = [:0],
f = [:int→ u1]

9=; with

8<:t . t2 = [:0],
u . u2 = [bool],
f = [λx:t2.true]

9=;
The definition for f in the second module will only match its
specification in the first module if we first reify u to bool and t
to int in both modules. This involves bidirectional type lookup, a
straightforward generalization of ML’s unidirectional type lookup.

Cyclic Type Definitions Type lookup in MixML can easily intro-
duce cyclic type definitions. For example,

(X= {t= [:0]}) with {t= [X.t→ int]}
or

t . t = [:0],
u . u = [t]

ff
with

u . u = [:0],
t . t = [u]

ff
Supporting such definitions would require the introduction of
higher-kinded equi-recursive types [6] into the type system, for
which there is no known effective typechecking algorithm in the
general case. Hence, during type lookup, we check that the def-
initions of the abstract type components being looked up do not
have cyclic dependencies. In particular, we would reject both of the
above examples.

The prohibition on type cycles during lookup prevents one from
defining transparently recursive types. However, as we explain at
the end of this section, we do allow the definition of opaquely
recursive types, which generalize ML-style iso-recursive datatypes.

Cyclic Term Definitions Linking can also introduce cycles be-
tween the definitions of term components. We adopt a call-by-value
semantics for the evaluation of term components in MixML, where
recursion is implemented by letrec-style backpatching. This is
similar to the approach taken by several other recursive module
systems [13, 32, 21, 25, 7].

Under the backpatching semantics, cyclic linking can cause a
run time exception if a term component is accessed before its
definition has been evaluated. Static detection of such errors is a
problem that is orthogonal to our work and has been addressed by
Hirschowitz and Leroy [16] and Dreyer [8] among others.

Double Vision An important problem that arises in extending ML
with recursive modules is the double vision problem [7]. Consider
the following simple example:

(X= {t= [:0], . . .}) seals {t= [int], . . .}
Here, we are defining a recursive sealed module with a type com-
ponent t that is defined internally to be int. Within the r.h.s. of
the seals, we know that t is implemented as int, so we ought
to know that X.t (which is just a recursive reference to t) equals
int as well, but the signature bound to X does not reflect this. As a
result, the programmer may be forced to expose the definition of t
as int in the l.h.s. module, thus losing type abstraction.

For this particular example, the problem can be worked around
by making t transparently equal to int in the l.h.s. module, and
then applying sealing “after the fact.” However, it is not always
possible to seal after the fact. For instance, if a recursive module
contains sealed substructures that wish to hide type information
from one another, then there is no way to hoist out the sealing
without exposing the substructures’ implementations to each other.

Fortunately, Dreyer has recently developed a general solution to
the double vision problem in his RMC type system [7], and we can
readily adopt his solution. The central ideas of RMC are as follows.

First is the idea of forward-declaring abstract types. In RMC,
the typing judgment for a module mod assumes that the names
of mod ’s abstract types have already been forward-declared (i.e.,
created ahead of time, potentially in an earlier scope), and that they
will be passed in as input to the typing judgment. For example, in
typing the sealed recursive module above, RMC would assume that
in the context there already exists a type variable, say α, which was
forward-declared to represent the abstract type component t.

Secondly, when typechecking a recursive or sealed module,
RMC employs a two-pass algorithm. The first pass is a “static”
pass, which computes the type components of the module (e.g.,
discovering that t in our example is defined internally as int). The
information from the static pass is then incorporated into the typing
context during the second “main” pass, which fully typechecks
the module. In our example, this would mean that the body of
the sealed module will be fully typechecked in a context where
(1) X.t is transparently equal to int, and (2) any occurrence of α
(the forward-declared representative of t) in the typing context is
replaced by int. This approach successfully avoids double vision
by ensuring that all forward references to the abstract type t in the
typing context are “up-to-date” with the most precise information
available about t in the current scope.

We adopt the same cure for double vision in MixML, forward-
declaring abstract types and performing two passes on the r.h.s.
of every linking operation. Unfortunately, since linking involves
bidirectional merging instead of unidirectional matching, the RMC
solution per se is not quite enough.

Cross-Eyed Double Vision Consider the following example:0@X=

8<:t . t1 = [:0],
u . u1 = [int],
f = [λx : t1.x]

9=;
1A with

8<:t . t2 = [bool],
u . u2 = [:0],
g = [λy : u2.X.f(y>1)]

9=;
Inside the definition of g, both t and u are accessible under two
distinct paths (t2 vs. X.t and u2 vs. X.u, respectively). Thus, to
typecheck the definition, two instances of double vision have to be
handled: checking y>1 requires knowing that u2 = X.u (and thus
u2 = int), and checking the application of X.f to the resulting
boolean requires knowing that X.t = t2 (and thus X.t = bool).

In short, this example suffers from cross-eyed double vision.
The RMC solution takes care of one direction (X.t = bool) but
not the other. In order to inform the typechecker that u2 = int, we
generalize the RMC approach as follows. In addition to taking as
input a list of type variables corresponding to the abstract export
types of a module, the MixML module typing judgment takes
as input an import realizer, which maps the type imports of the
module to the concrete types that will instantiate them. In the above
example, when performing the main pass on the r.h.s. module, the
typechecker will pass in a realizer mapping u to int, and this
information will get propagated to the r.h.s. definition of u. In order
to compute this realizer, we perform bidirectional type lookup in
between the static and main passes of typechecking.

Information about import types is only propagated rightward.
For instance, in the above example, the l.h.s. module does not get
to know that t1 = bool. This does not incur double vision because
the l.h.s. module does not have a name by which to refer to the r.h.s.
module. If a module’s type imports are not instantiated by (the l.h.s.
of) any enclosing linking operation, the typechecker will pass in a
realizer that maps them to abstract type variables. For the details of
how those import type variables are managed, see Section 4.

While double vision is a problem with no easy workarounds,
the seriousness of cross-eyed double vision is somewhat debatable.
For instance, in our example, we could easily avoid double vision
for the u component by making its definition in the r.h.s. module
manifestly equal to X.u. However, such a workaround is quite
brittle. It only works if u is an export in the l.h.s. module; otherwise,

7 2008/4/2

the definition of u2 as X.u is indistinguishable from a transparent
type cycle. It is simpler for the programmer to be able to rely on
the type system to avoid double vision in both directions.

Opaquely Recursive Types We conclude this section by explain-
ing how to encode ML-style iso-recursive (or “opaquely recursive”)
datatype’s. The encoding is interesting because it demonstrates
an instance where we want to incur double vision! Luckily, the
MixML type system provides a very simple way of manually over-
riding the built-in solution to double vision.

First, consider the following encodings of specifications and
definitions for non-recursive datatype’s, respectively:

{:`≈ tyc} def
= {` .X = [:0], ` in= [:tyc → X],

` out= [:X→ tyc]}
{`≈ tyc} def

= {:`≈ tyc} seals
{` .X = [tyc], ` in= [λx:X.x],

` out= [λx:X.x]}
Similar to the interpretations given by Harper and Stone [15]
and Dreyer [7], these encodings model the datatype definition
{`≈ tyc} as an ADT providing an abstract type `, together with
` in (fold) and ` out (unfold) functions to coerce between ` and its
underlying representation tyc. For brevity, we have only shown the
encoding of monomorphic datatype’s (of kind 0) here; it easily
generalizes to the polymorphic case.

Given these definitions, it would seem straightforward to encode
a recursive datatype by enclosing a non-recursive datatype in a
recursive module. For example, integer lists:

rec (X : {list= [:0]}) {list≈ unit + int× X.list}
Unfortunately, this encoding does not typecheck. The reason is
that, when the typechecker descends into the body of the sealed
datatype module, it will (1) discover that list is defined to be
τ = unit+ int× X.list, (2) try to update the typing context so
that X.list is transparently equal to τ , and (3) report the presence
of a transparent type cycle.

What we want, then, is to be able to switch off the typechecker’s
double vision avoidance mechanism. We can achieve this by insert-
ing a unit suspension/instantiation β-redex:

rec (X : {list= [:0]}) new[{list≈ unit + int× X.list}]
Inserting “new[·]” has the effect of dislocating the datatype
module from its surrounding scope. Units in MixML were designed
for encapsulation and separate compilation, and thus the MixML
typechecker does not make any attempt to connect the abstract
types defined inside a unit (in this case, list) with any forward-
declared types in the typing context (X.list).

4. The MixML Type System
4.1 Semantic Objects
The MixML type system is based to a large extent on Dreyer’s
RMC type system for recursive modules [7]. RMC in turn inher-
its many aspects from the Definition of Standard ML [23]. In par-
ticular, it represents the types of modules by semantic objects. As
in RMC, our semantic objects—shown in Figure 2—are actually
signatures from a simpler “internal” type system, enriched with an-
notations that guide typechecking.1 These semantic signatures (Σ)
include structure signatures ({|` : Σ|}), as well as atomic signatures
for type modules ([[= A]]), term modules ([[τ]]±), and units ([[Φ]]+).
Our semantic objects differ from RMC’s in that atomic term and
unit signatures are annotated with variances, in order to denote

1 The internal type system is defined in the supplementary appendix, but is
not required in order to understand the static semantics of MixML.

Type Constructors A,B, τ ::= α | λ(α).τ | A(τ) | . . .
Module Signatures Σ ::= [[= A]] | [[τ]]± | [[Φ]]+ | {|` : Σ|}
Unit Signatures Φ ::= ∀α.∃β. (L; Σ)
Type Substitutions δ ::= {α 7→A}
Type Locators L ::= [[=α]] | {|` :L|}
Import Realizers R ::= [[= A]] | {|` :R|}
Module Contexts Γ ::= ∅ | Γ,X : Σ

Σ.`s
def
=

8<: Σ if `s = ε
Σ′ if `s = `s′.` and Σ.`s′ = {|` : Σ′, . . . |}
↑ otherwise

Σ(`s)
def
= A if Σ.`s = [[= A]]

L(α)
def
= `s if L(`s) = α and 6 ∃ `s′ such that L(`s′) = α

R ⊆ Σ
def
= ∀ `s,A.R(`s) = A⇒ Σ(`s) = A

R1 ∪R2
def
= R such that ∀`s,A.

R(`s) = A⇔ (R1(`s) = A ∨R2(`s) = A)

Figure 2. Semantic Objects and Auxiliary Definitions

whether they are imports (−) or exports (+).2 The import/export
distinction for type components is handled differently, as we ex-
plain below.

A unit signature (Φ) is a module signature that has been uni-
versally quantified over the module’s import types and existentially
quantified over its abstract export types. Unit signatures also con-
tain a type locator L that maps the import names α to label paths
in Σ. Type locators are used to implement type lookup.

Locators are a syntactic subcategory of import realizers R,
described in Section 3, which are in turn a subcategory of module
signatures Σ. This conveniently allows the sharing of meta-notation
for all three kinds of objects, as shown in Figure 2. In particular,
all three may be viewed as functions mapping the pathnames of
type components to the type components themselves. Well-formed
locators have the additional property that all their type components
are distinct type variables, and thus they can be viewed as bijective
functions between those type variables and their corresponding
paths. As a matter of simplicity, we implicitly identify all realizers
that represent the same mapping from paths to types, in effect
ignoring syntactic differences with respect to empty substructures.

As a concrete example, consider the following unit:248<:
A . A = {t= [:0]},

R =

u . u= [:0],
f= [:A.t→ u]

ff
seals

u= [int],
f= [λx:(A.t).7]

ff9=;
35

The following semantic signature describes this unit:

∀α.∃β. (L; {|A : {|t : [[=α]]|}, R : {|u : [[=β]], f : [[α→ β]]+|}|})

where L is the locator {|A : {|t : [[=α]]|}|}, mapping α to A.t.
Semantic core-level types include standard type functions and

application, plus an unspecified set of additional base types. For
convenience, we assume that the set of type variables is partitioned
into different kinds. This allows us to drop kind annotations from
types and type variables, since they can always be derived syntac-
tically. We write ` A : K to assert that a constructor A has kind K.
For type substitutions δ we demand implicitly that they be kind-
preserving. We also assume and maintain the invariant that types
are kept in β-normal form; we assume substitutions are implicitly
β-normalizing; and we assume the existence of a strict total order-
ing <Paths on label paths.

2 Here we present only the fragment of MixML without unit imports [[Φ]]−.
Higher-order units are formalized in the supplementary appendix.

8 2008/4/2

|[[= A]]| def
= [[= A]]

|[[τ]]±| def
= [[τ]]+

|[[Φ]]+| def
= [[Φ]]+

|{|` : Σ|}| def
= {|` : |Σ||}

Modules: Γ;R;β ` mod : Σ

X : Σ ∈ Γ

Γ; {||}; ∅ ` X : |Σ|
(1)

Γ; {||}; ∅ ` {} : {||}
(2)

` A : K
Γ; [[= A]]; ∅ ` [:K] : [[= A]]

(3)
Γ ` tyc ; A

Γ; {||}; ∅ ` [tyc] : [[= A]]
(4)

Γ ` tyc ; τ : 0

Γ; {||}; ∅ ` [:tyc] : [[τ]]−
(5)

Γ ` exp : τ

Γ; {||}; ∅ ` [exp] : [[τ]]+
(6)

Γ;R;β ` mod : Σ

Γ; {|` :R|};β ` {`= mod} : {|` : Σ|}
(7)

Γ; {|` :R|};β ` mod : {|` : Σ, `′ : |Σ′||}
Γ;R;β ` mod .` : Σ

(8)

` L1 locates α1 Γ;L1]R1;β1 ` mod1 : Σ1

` L2 locates α2 Γ,X : Σ1;L2]R2;β2 s̀tat mod2 : Σ2 α1, α2 fresh
` (L1; Σ1)� (L2; Σ2) ; δ Γ,X : δΣ1; δL2]R2;β2 ` mod2 : Σ′2 ` δΣ1 + Σ′2 ⇒ Σ

Γ;R1 ∪R2;β1, β2 ` (X = mod1) with mod2 : Σ
(9)

` L1 locates α1 Γ;L1;β1 ` mod1 : Σ1

` L2 locates α2 Γ,X : Σ1;L2;β2 s̀tat mod2 : Σ2 β2, α2 fresh

` (L1; Σ1)� (L2; Σ2) ; δ δΓ,X : δΣ1; δL2;β2 ` mod2 : Σ′2 ` δΣ1 + Σ′2 ⇒ |Σ|

Γ; {||};β1, α1 ` (X = mod1) seals mod2 : |Σ1|
(10)

Γ ` mod : Φ

Γ; {||}; ∅ ` [mod] : [[Φ]]+
(11)

Γ ` mod : [[∀α.∃β. (L; Σ)]]+ dom(δ) = {α, β}
Γ; δL; δβ ` new mod : δΣ

(12)

Complete Modules and Units: Γ ` mod : Σ Γ ` mod : Φ

Γ; {||};β ` mod : |Σ| β fresh β 6∈ FV(Σ)

Γ ` mod : |Σ|
(13)

Γ;L;β ` mod : Σ ` L locates α α, β fresh

Γ ` mod : ∀α.∃β. (L; Σ)
(14)

Core-Language Types and Terms: Γ ` tyc ; A : K Γ ` exp : τ

Γ ` mod : [[= A]] ` A : K

Γ ` Tyc(mod) ; A : K
(15)

Γ ` mod : [[τ]]+

Γ ` Val(mod) : τ
(16)

Rules for α, λ(α).tyc, tyc(tyc) are standard.

Type Locators: ` L locates α

α = α1, . . . , αn range(L) = {α} L is bijective ∀i, j (s.t. i < j) ∈ 1..n : L(αi) <Paths L(αj)

` L locates α
(17)

Bidirectional Type Lookup: ` (L1; Σ1)� (L2; Σ2) ; δ

(Σ2 ◦ L1)] (Σ1 ◦ L2) = {α1 7→A1, . . . , αn 7→An}
δ0 = {} ∀i, j (s.t. i ≤ j) ∈ 1..n : αj 6∈ FV(Ai) δi = δi−1] {αi 7→ δi−1Ai}

` (L1; Σ1)� (L2; Σ2) ; δn
(18)

Signature Merging: ` Σ1 + Σ2 ⇒ Σ

` Σ2 + Σ1 ⇒ Σ

` Σ1 + Σ2 ⇒ Σ
(19) ` [[= A]] + [[= A]]⇒ [[= A]]

(20)
` τ1 ≤ τ2

` [[τ1]]± + [[τ2]]− ⇒ [[τ1]]±
(21)

` Σ + {||} ⇒ Σ
(22)

` 6∈ `2 ` {|`1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|`3 : Σ3|}
` {|` : Σ, `1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|` : Σ, `3 : Σ3|}

(23)
` Σ1 + Σ2 ⇒ Σ3 ` {|`1 : Σ′1|}+ {|`2 : Σ′2|} ⇒ {|`3 : Σ′3|}
` {|` : Σ1, `1 : Σ′1|}+ {|` : Σ2, `2 : Σ′2|} ⇒ {|` : Σ3, `3 : Σ′3|}

(24)

Figure 3. Typing Rules for MixML

9 2008/4/2

4.2 Typing Rules
Figure 3 shows the typing rules for MixML.

The main typing judgment for MixML modules has the form
Γ;R;β ` mod : Σ. Here, β is a list of distinct type variables repre-
senting mod ’s abstract type exports, while the realizer R captures
mod ’s type imports. (As explained in Section 3, this generalizes
RMC’s typing judgment.) Note that, due to forward declarations of
mod ’s abstract types arising from linking, the variables β may also
appear free in Γ. Thanks to the implicit kinding of type variables,
type contexts degenerate into simple sets. Because a suitable type
context ∆ binding all free type variables in a judgment is trivially
inferable, we omit the ∆’s in the presentation of our rules. We write
α fresh in the premise of a rule to mean that α 6∈ the type context
of the conclusion of the rule.

Following RMC, we use shading of certain premises in the typ-
ing rules to denote the delta between the main typing judgment and
the static typing judgment (s̀tat). The static judgment is used to
implement the static pass of recursive linking, as described in Sec-
tion 3. To obtain the static version of any rule, simply remove all
shaded premises, replace all `’s with s̀tat’s, and erase all occur-
rences of term signatures [[τ]]± to the empty signature {||}.

Most of the rules for basic modules are fairly straightforward.
Notably, Rule 1 for variables X returns the signature |Σ|, which
turns all imports of Σ into exports. The reason is that, regardless
of whether the module that X is bound to—call it mod—is fully
defined, the module expression X is a definite reference to mod and
is therefore itself fully defined. To take a concrete example, recall
the encoding of sig1 matches sig2 in Section 2. In the encoding,
we bind sig1 to a variable X, and then check that the linking of X
with sig2 results in a complete module. This only works because X
will export a component corresponding to each of sig1’s imports,
and those exports will be used to satisfy all the imports of sig2.

Rule 3 for [:K] uses the import realizer to look up the defini-
tion of its type import (which is A). The other rules for type and
term modules are straightforward. Note that Rules 5 and 6 have
shaded premises because terms are ignored during the static pass.

Typing namespaces (Rule 7) and projection (Rule 8) is also
straightforward. The latter rule requires the signatures of all compo-
nents other than the one being projected out to be of the form |Σ|.
This enforces that no term imports (of signature [[τ]]−) are being
hidden. (The reasons for enforcing this are discussed in Section 2.)
The hidden components cannot contain type imports either, as the
import realizer in the premise contains only the projected label `.

Rule 9 handles recursive linking. It is the central rule of our
system, and while it is admittedly somewhat complex, it is essen-
tially just a bidirectional generalization of RMC’s typing rule for
recursive modules. Let us first step through the rule ignoring the
L’s andR’s. Type checking proceeds by first checking mod1, pro-
ducing a signature Σ1 for X. As in RMC, checking mod2 requires
two passes. The first, “static” pass, only collects type specifications
and definitions from mod2. The linking rule then uses bidirectional
lookup (Rule 18) to look up mod1’s type imports in mod2 and vice
versa. (RMC only employs unidirectional lookup.)

The bidirectional lookup judgment will fail if it detects any
transparent type cycles. Assuming it succeeds, it yields a type sub-
stitution δ, which is then applied to the signature Σ1 previously
computed for mod1, intuitively “patching” it with the appropriate
type definitions from mod2. In this way, when we typecheck mod2

fully in the subsequent “main” pass, we see no difference between
mod2’s type components and the components with the same name
in X. This is the key to avoiding double vision. Lastly, the signa-
tures of mod1 and mod2 are merged, yielding the final signature
Σ. Merging is defined by a straightforward auxiliary judgment.

Now about those L’s and R’s: To deal with type imports and
cross-eyed double vision, the linking rule has to properly adjust

locators and realizers as it proceeds. The input realizer is first split
into R1 and R2, where the former contains imports (of the linked
module) stemming from mod1, and the latter those from mod2.
Note that these may overlap. In addition, each module may have
additional local imports, i.e., imports that the other module will
satisfy. These are handled by locally extending the realizer with
fresh locators L1 and L2, which are later used for type lookup.

Let us walk through the cross-eyed double vision example from
Section 3. Because the linked module has neither imports nor ab-
stract type exports, Rule 9 will be invoked with R1 = R2 = {||}
and β1 = β2 = ∅. However, it will introduce fresh vari-
ables α1 and α2 for the local imports of both sides and de-
fine L1 = {|t : [[=α1]]|} and L2 = {|u : [[=α2]]|} as local re-
alizers for the l.h.s. and r.h.s., respectively. Traversing into the
l.h.s. delivers Σ1 = {|t : [[=α1]], u : [[= int]], f : [[α1 → α1]]+|}.
Next, the static pass on the r.h.s. is performed, yielding Σ2 =
{|t : [[= bool]], u : [[=α2]], g : {||}|}. Note that g has empty signature
in Σ2 since the static pass ignores term modules.

Using Σ1, Σ2, L1, and L2, bidirectional type lookup returns
the substitution δ = {α1 7→ bool, α2 7→ int}. For the main pass
on the r.h.s., δ is applied to Σ1 and the locator L2, turning the latter
into the realizer {|u : [[= int]]|}. Thus, in this pass, the typechecker
will see that X.t is bool, and it will know to implement u as int,
thus avoiding cross-eyed double vision. Finally, it will return the
signature Σ′2 = {|t : [[= bool]], u : [[= int]], g : [[int→ bool]]+|},
which can be merged successfully with δΣ1.

Rule 10 for opaque linking is very similar to Rule 9, but slightly
simpler because the result of opaque linking is not permitted to
have any residual imports. (This is enforced by replacing R1 and
R2 with {||}, and requiring that the merged signature have the form
|Σ|.) In addition, the type imports of mod1 (the α1), which mod2

must satisfy, become abstract type exports for the whole module,
while the abstract type exports of mod2 (the β2), are fresh variables
only introduced into scope locally (since mod2 is hidden). Finally,
note that the final signature of the module is derived solely from
the signature of mod1—all information about mod2 is kept secret.

Consider the following example of opaque linking:8<:t . t1 = [:0],
u . u1 = [int],
f = [:u1 → t1]

9=; seals

8<:t . t2 = [bool],
u . u2 = [:0],
f = [λx:u2.true]

9=;
The linked module creates a single abstract export type, say α. Nei-
ther constituent module creates any abstract types independent of
the sealing, so Rule 10 is applied with β1 = β2 = ∅ and α1 = α.
Then, Σ1 = {|t : [[=α]], u : [[= int]], f : [[int→ α]]−|} is derived
for the l.h.s. The r.h.s. locally imports u, so we choose a single fresh
α2 and Σ2 = {|t : [[= bool]], u : [[=α2]], f : {||}|}will be returned by
the static pass. With lookup returning δ = {α 7→ bool, α2 7→ int},
the main pass proceeds under context δΓ, where any forward
references to α are replaced by bool. The main pass yields
Σ′2 = {|t : [[= bool]], u : [[= int]], f : [[int→ bool]]+|}. Merg-
ing δΣ1 and Σ′2 produces Σ = Σ′2, and since Σ has no resid-
ual imports, we have Σ = |Σ|. In contrast to Rule 9, Σ is
not taken as the final signature. Instead, the signature |Σ1| =
{|t : [[=α]], u : [[= int]], f : [[int→ α]]+|} is returned. Note how it
keeps t abstract (using the abstract type name α passed in from the
context), while marking f as an export.

Rules 11 and 12, dealing with unit introduction and elimina-
tion, are very simple. The former invokes the unit typing judgment
described below. The latter instantiates the given unit by choosing
an appropriate substitution δ for the unit’s import and export type
names, and then applying δ to the signature Σ of the unit’s con-
stituent module. Although the rule appears nondeterministic, the
choice of δ is in fact completely determined by the import realizer
and abstract type export list, which are inputs to typechecking.

10 2008/4/2

Projection of (core) types and terms (Rules 15 and 16) requires
the module being projected from to be complete (no imports). This
prevents meaningless examples like Tyc([:0]) or Val([:int]).
Note that projections of the form Tyc(X.`s) or Val(X.`s) are
always acceptable, because variables are definite references (see
above). The latter may, however, raise a runtime “blackhole” ex-
ception if the component X.`s refers to is as yet undefined.

Completeness is ensured by Rule 13, which checks that mod
neither has type imports (by passing in an empty realizer) nor term
imports (the signature is of the form |Σ|). Local abstract types β
may not escape their scope by appearing in Σ.

Finally, Rule 14 typechecks a module as a self-contained unit.
It introduces fresh names for import types (α) and export types (β),
which become quantified in the resulting unit signature. While the
rule appears to have to guess the structure of the type locator L, as
well as the number, order, and kinds of α and β, out of nowhere,
there is in fact only one way to choose them, which is easy to
compute algorithmically. (See the appendix for details.)

4.3 Dynamic Semantics and Type Soundness
The dynamic semantics of MixML is given by evidence translation
into a simpler internal language (IL) closely based on Dreyer’s RTG
calculus for recursive type generativity [9]. As for RMC, soundness
of the translation together with soundness of the IL is then sufficient
to establish type soundness for MixML.

The evidence translation follows closely in the style of Flatt
and Felleisen’s unit language [13, 29]. In particular, the translation
employs a backpatching semantics, using lazy reference cells to
enable recursive linking for dynamic module components. For full
details, we refer the reader to the supplementary appendix.

5. Related and Future Work
There is a large body of work on ML modules and mixin modules
independently, some of which we cited in the introduction. For
space reasons, we confine our discussion of related work in this
section to modularity mechanisms that attempt a synthesis of ML-
style and mixin-style features.

Mixin Modules for ML Duggan and Sourelis [12] were the first
to integrate a notion of mixin composition into ML modules with
type components. They divide mixin modules into three parts. Of
these, only the middle part is “mixable,” and it may only contain
datatype and fun bindings. In addition, their focus lies mainly on
merging datatype variants and function clauses in order to support
extensible datatypes. They consider neither opaque sealing nor hi-
erarchical structures, and expressly disallow separate compilation.

Recursive Modules for ML As mentioned in the introduction,
there are several proposals for extending ML with recursive mod-
ules [6, 32, 21, 25, 7], but they do not handle separate compilation
in general. Both Moscow ML [32] and OCaml [21] support sepa-
rate compilation for limited classes of recursive modules through
the functor mechanism. For example, if recursive modules in these
languages do not contain any internal uses of opaque sealing and
only contain term components of pointed type (i.e., functions or
lazy suspensions), they can usually be separately compiled. This
covers quite a few common cases, but is not a general solution.

The reason for the restrictions on sealing boils down to the
double vision problem. First, none of these languages (with the
exception of RMC [7]) properly handles double vision in general.
(See Dreyer [7] for details.) Second, even in RMC, if we try to
break up a recursive module rec (X : sig) mod into separately
compiled functors of the form λ(X : sig).mod ′ (where mod ′ is a
substructure of mod), RMC’s double-vision-avoiding mechanism
for the rec construct does not carry over to the typechecking of the
functor construct, so double vision again rears its ugly head.

Ignoring separate compilation, MixML’s type system is closely
based on RMC’s, and our encoding of the rec construct for recur-
sive modules yields essentially the same semantics as in RMC.3

MixML’s transparent linking generalizes RMC’s rec construct,
while opaque linking generalizes RMC’s sealing operator. This
generalization actually simplifies the semantics of the language: the
typing rules for transparent and opaque linking are very similar—
they match up premise for premise—whereas, in RMC, the rules
for recursive and sealed modules differ significantly.

Like us, Nakata and Garrigue’s Traviata language [25] supports
definitions of opaquely recursive types, but not transparently recur-
sive ones. Their encoding of opaquely recursive types is simpler
than ours in that they do not need to insert new[·] as described in
Section 3. This is only because their type system does not attempt
to handle the double vision problem in the first place, so there is no
need to manually override it.

Units Units were originally proposed by Flatt and Felleisen [13]
as a recursive module extension to Scheme, which they extended
with support for abstract type components. Later work by Owens
and Flatt extended units with hierarchical namespaces (called mod-
ules) and translucent type components [29]. Like MixML, the sys-
tem presented in the latter paper (hereafter, OF) provides units as
a form of mixin module that may contain type components and
nested structures, but excludes overriding. Units are first-class in
OF, subsuming MixML’s higher-order units (described in the ap-
pendix), but also introducing subtyping into the core language.

In OF, as in other mixin-based languages, units may be re-
cursively linked with each other, but they are not hierarchically
composable into other units. In contrast, MixML modules are
both hierarchically composable and recursively linkable. MixML
units (named in homage to Flatt’s units), which are just suspended
modules, are composable both hierarchically and recursively as
well. For example, to recursively link units U1 and U2 we write
[new U1 with new U2], as seen at the end of Section 2.

OF requires substantially more bookkeeping annotations from
the programmer than MixML. In particular, every unit and linking
expression includes explicit specifications of all its imports and ex-
ports, and all wiring needed in a linking step must be spelled out ex-
plicitly. While this may offer some added flexibility, it becomes ex-
tremely burdensome for encoding ML-style modules. Specifically,
OF show how to encode an ML-like module system, but it is one in
which modules require signature annotations on essentially every
subterm (for example, each functor application involves three dis-
tinct signature annotations). Moreover, it is not clear how a general
recursive module construct rec (X : sig) mod would be expressed
in OF. In contrast, our MixML encoding of ML-style modules is
simple and direct and includes recursive modules.

Recursive DLLs Duggan [11] presents a language for recursive
DLLs similar to OF units. His units (called modules in his paper)
are enriched with explicit support for sealing and an orthogonal
construct for dynamic typing. As in other mixin approaches, his
modules are not hierarchically composable. In addition, his system
does not support transparent type definitions, only opaque datatype
definitions and sharing constraints between abstract types. As in
MixML, compound structures are built from atomic forms, but
using a concatenation operator, separate from mixin linking.

3 We say “essentially” because MixML is more liberal than ML in certain
respects. For example, when matching a structure against a signature with
a transparent type spec type t = int, ML will require the structure to
have a type component t equal to int; MixML will require only that, if
the structure does have a t component, then it is equal to int. While we
view this departure from ML as a potentially useful feature, it makes formal
comparisons of expressiveness difficult.

11 2008/4/2

Signature Operators Ramsey et al. [30] propose a variety of ex-
tensions to the ML signature language. Some of them are express-
ible in MixML: signature composition (andalso) directly corre-
sponds to linking, the adding and revealing constructs for sig-
nature extension and refinement can also be encoded using linking.
Moreover, they propose a binder (as) that plays a role similar to
the variable binding in MixML’s linking construct. Other exten-
sions presented in their paper, such as renaming and removal of
components, cannot be encoded directly in MixML. However, sim-
ilar operators are present in classical CMS-style mixin modules [3],
and we believe these could be readily incorporated into MixML.

Scala Scala is a language developed by Odersky et al. [27, 28]
combining object-oriented mixin class composition with ML-style
type components. It provides several linking operations; in particu-
lar, its mixin composition is very similar to our transparent linking,
except that it allows overriding and restricts specialization of ab-
stract fields to be left-to-right. The inheritance mechanism can also
be viewed as a form of transparent linking, combined with typical
OO-style data abstraction via access modifiers on class fields. This
form of data abstraction is less expressive than ML-style sealing,
which we model using opaque linking. Scala classes are not hierar-
chically composable in the manner of MixML modules.

An interesting restriction in Scala is that mixin composition is
only allowed with a concrete class, not a class represented by an
abstract type (i.e., an import). In contrast, in the higher-order ex-
tension of MixML (discussed in the appendix), unit signatures en-
able one to specify a unit as an import component of a module, and
to instantiate it (via new) inside that module. Scala introduces self-
types as a remedy for its restriction. Basically, selftype annotations
can be viewed as another form of linking that specifically allows
recursive linking against undefined classes. In doing so, it delays a
certain amount of typechecking, which is only performed when the
class is finally instantiated.

The success of Scala was a major impetus for us to figure out
how to incorporate mixin composition into the ML module system.

J& Also in the context of object-oriented programming, Nys-
trom et al. [26] argue that nested intersection (hierarchical com-
posability) for nested classes is an essential feature for supporting
compositional modular extensions. They devise J&, a mixin exten-
sion to a Java-like language that supports this feature. Unlike Scala
or MixML, the language does not support type components. Con-
sequently, it does not provide ML-style sealing either. Nested class
definitions can simulate type components to a certain extent, but
are unable to express type equivalences. Thus, it is unclear how
J& could encode functor-style modular abstractions involving type
sharing specifications.

Future Work We have built a prototype interpreter for a language
based on MixML, which includes built-in support for a number of
the encodings given in Section 2. It is available for download at:
http://www.mpi-sws.mpg.de/~rossberg/mixml/.

We believe that our design already provides a fairly complete
basis for a practical module system. To further expand its utility,
though, we are interested in extending it with support for first-class
units (e.g., in the style of Dreyer et al.’s modules-as-first-class-
values [10], or Rossberg’s packages [31]), as well as OCaml-style
applicative functors [18], among other features.

References
[1] D. Ancona, S. Fagorzi, E. Moggi, and E. Zucca. Mixin modules and

computational effects. In ICALP ’03.

[2] Davide Ancona and Elena Zucca. A theory of mixin modules: Basic
and derived operators. Mathematical Structures in Computer Science,
8(4):401–446, 1998.

[3] Davide Ancona and Elena Zucca. A calculus of module systems.
Journal of Functional Programming, 12(2):91–132, 2002.

[4] Gilad Bracha and William Cook. Mixin-based inheritance. In
OOPSLA ’90.

[5] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In
ICCL ’92.

[6] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?
In PLDI ’99.

[7] Derek Dreyer. A type system for recursive modules. In ICFP ’07.

[8] Derek Dreyer. A type system for well-founded recursion. In
POPL ’04.

[9] Derek Dreyer. Recursive type generativity. Journal of Functional
Programming, 17(4&5):433–471, 2007.

[10] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In POPL ’03.

[11] Dominic Duggan. Type-safe linking with recursive DLLs and shared
libraries. ACM TOPLAS, 24(6):711–804, 2002.

[12] Dominic Duggan and Constantinos Sourelis. Mixin modules. In
ICFP ’96.

[13] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In PLDI ’98.

[14] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL ’94.

[15] Robert Harper and Chris Stone. A type-theoretic interpretation of
Standard ML. In Proof, Language, and Interaction: Essays in Honor
of Robin Milner. MIT Press, 2000.

[16] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value
setting. ACM TOPLAS, 27(5):857–881, 2005.

[17] Mark P. Jones. Using parameterized signatures to express modular
structure. In POPL ’96.

[18] Xavier Leroy. Applicative functors and fully transparent higher-order
modules. In POPL ’95.

[19] Xavier Leroy. Manifest types, modules, and separate compilation. In
POPL ’94.

[20] Xavier Leroy. A modular module system. Journal of Functional
Programming, 10(3):269–303, 2000.

[21] Xavier Leroy. A proposal for recursive modules in Objective Caml,
2003. Available at: http://caml.inria.fr/pub/papers/xleroy-
recursive modules-03.pdf.

[22] David MacQueen. Modules for Standard ML. In LFP ’84.

[23] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[24] D. A. Moon. Object-oriented programming with Flavors. In
OOPSLA ’86.

[25] Keiko Nakata and Jacques Garrigue. Recursive modules for
programming. In ICFP ’06.

[26] Nathaniel Nystrom, Xin Qi, and Andrew Myers. J&: Nested
intersection for scalable software composition. In OOPSLA ’06.

[27] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory
of objects with dependent types. In ECOOP ’03.

[28] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA ’05.

[29] Scott Owens and Matthew Flatt. From structures and functors to
modules and units. In ICFP ’06.

[30] Norman Ramsey, Kathleen Fisher, and Paul Govereau. An expressive
language of signatures. In ICFP ’05.

[31] Andreas Rossberg. The missing link – dynamic components for ML.
In ICFP ’06.

[32] Claudio V. Russo. Recursive structures for Standard ML. In ICFP ’01.

12 2008/4/2

Modules mod ::= . . . | [:usig]
Unit Signatures usig ::= mod import `s | mod export `s

Figure 4. Higher-Order MixML Syntax Extensions

A. Higher-Order MixML
For space reasons, the language presented in Section 4 provides
only first-order units. In this section we give the full language
including unit imports, and thus subsuming higher-order modules.

A.1 Syntax
Figure 4 shows the syntactic extensions necessary for supporting
higher-order units. Basically, all that is needed is adding atomic unit
imports [:usig]. However, to describe a unit import, it is necessary
to introduce a new syntactic class usig of unit signatures.

A unit signature takes one of two symmetric forms, written
mod import `s and mod export `s. In both forms, mod is a
MixML module representing an ML signature, i.e., it must have
neither term exports nor abstract type exports. The import and
export clauses serve to identify which components specified in
mod are to be treated as imports and which as exports in the
unit that the usig is describing. In the case of mod import `s,
the list `s of paths enumerates all components of mod that are to
be considered imports, treating all others as exports. Conversely,
mod export `s lists the exports, and treats all other components
as imports. A path `s ∈ `s may point to an entire structure in mod ,
in which case the annotation applies to all subcomponents of that
structure.

For example, recall the unit UA from the end of Section 2.

[(X = new S) with {A= modA}]
We can assign it the following unit signature:

new S export A

Or alternatively:
new S import B

We provide both forms merely as a convenience.
The encoding of the functor F given in Section 2,

λ(X:sig).mod
def
= [{Arg .X = sig , Res= mod}]

can be classified with a unit signature as follows (assuming that
sig ′ is a suitable specification of its body mod):

{Arg .X = sig , Res= sig ′} import Arg
This corresponds to the ML functor signature (X : sig)→ sig ′.

Unit signature bindings (i.e., bindings of unit signatures usig
to signature variables S for convenience) are easy to encode as
well. Just as with regular signature bindings, we simply suspend
the unit signature using a unit. That is, we bind S = [[:usig]].
Then, whenever we wish later in the program to create a unit
import U of signature usig , we simply bind U = new S. As units
subsume functors, this demonstrates how MixML encodes functor
signature bindings, of the kind that exist in higher-order dialects of
ML modules.

Module Signatures Σ ::= . . . | [[Φ]]−

Unit Signatures Φ ::= ∀α.∃β. (L1;L2; Σ)

∀α.∃β. (L; Σ)
def
= ∀α.∃β. (L;L′; Σ) for some L′

prefix?(`s, `s)
def
= true if ∃`s1 ∈ `s. ∃`s2. s.t. `s = `s1.`s2

Figure 5. Semantic Objects and Auxiliary Definitions for Higher-
Order MixML

A.2 Semantic Objects
In order to be able to express unit imports, the definition of seman-
tic objects has to be extended in two respects, shown in Figure 5:

1. Atomic unit signatures have to be equipped with an im-
port/export polarity, analogously to atomic term signatures.

2. Unit signatures Φ contain two type locators L1 and L2, respec-
tively mapping the import types α and abstract export types β.
The export locator L2 is used for higher-order unit signature
matching and thus only needed when representing the transla-
tion of MixML-level usig’s; we omit it in other places.

A.3 Typing Rules
Figure 6 shows the additional rules (and changes to existing rules)
that are necessary to incorporate unit imports.

Rule 25 is the obvious rule for unit imports. Note that Rule 12
for new is left unchanged: it still requires that the argument mod is
a unit export module, i.e., that it actually contains a unit definition.
Again, the unit it contains is free to have imports, which will
become imports of new mod itself. More concretely, the premise
prevents examples like new [:usig] from type checking, which
would instantiate a non-existent unit, but permits new [[:usig]]
(as seen in the encoding of unit signature bindings given earlier).

The two rules for elaborating unit signatures are simpler than
they might look. Rule 26 infers a unit signature for mod and
requires that it is free of exports (no export type variables, and
−Σ′ = |Σ′|). It then partitions the import type variables according
to the paths listed in `s, turning unreachable ones into exports. The
second form of unit signature (with an export clause) is handled
in the dual manner.

One interesting restriction is that the merging of two unit im-
ports (Rule 29) does not allow their signatures to differ. This restric-
tion is in place, for somewhat technical reasons, in order to ensure
decidability. It is worth noting, though, that the restriction does not
place any limitations on the MixML encoding of ML-style higher-
order functors (since that encoding will never attempt to merge two
unit imports).

When matching unit exports against unit imports, however
(Rule 28), merging allows subtyping in the form of unit signature
matching. Rule 30 defines signature matching in terms of linking.
The rule checks whether the exports of Φ1 subsume the exports
of Φ2 and, contravariantly, the imports of Φ2 subsume those of
Φ1. It does so by inverting the module signature Σ2 from Φ2 (i.e.,
swapping imports and exports) and trying to link it against Σ1.
Type components are dealt with by using the bidirectional lookup
judgment to simultaneously look up the type exports of Σ2 in Σ1

and the imports of Σ1 in Σ2. Notably, this is the only rule that
makes use of export locators. In the case of Φ2, an export locator is
guaranteed to exist because Φ2 is a target signature—invariants of
the type system (formalized in the appendix) ensure that Φ2 must
be the translation of some MixML usig .

13 2008/4/2

|[[= A]]| def
= [[= A]]

|[[τ]]±| def
= [[τ]]+

|[[Φ]]±| def
= [[Φ]]+

|{|` : Σ|}| def
= {|` : |Σ||}

−[[= A]]
def
= [[= A]]

−[[τ]]±
def
= [[τ]]∓

−[[Φ]]±
def
= [[Φ]]∓

−{|` : Σ|} def
= {|` :−Σ|}

Modules: Γ;L;β ` mod : Σ

Γ ` usig ; Φ

Γ; {||}; ∅ ` [:usig] : [[Φ]]−
(25)

Unit Signatures: Γ ` usig ; Φ

Γ ` mod : ∀α.∃∅. (L; Σ′) |Σ| = |Σ′| = −Σ′ L = L1] L2

` L1 locates α1 ` L2 locates α2 {α1} = {α | prefix?(`s,L(α))}
∀`s: Σ′.`s = [[τ]]− or [[Φ]]− ⇒ (Σ.`s = Σ′.`s⇔ prefix?(`s, `s)) ∀`s ∈ `s: Σ.`s is defined

Γ ` mod import `s ; ∀α1. ∃α2. (L1;L2; Σ)
(26)

Γ ` mod import `s ; ∀α1. ∃α2. (L1;L2; Σ)

Γ ` mod export `s ; ∀α2.∃α1. (L2;L1;−Σ)
(27)

Signature Merging: ` Σ1 + Σ2 ⇒ Σ

` Φ1 ≤ Φ2

` [[Φ1]]+ + [[Φ2]]− ⇒ [[Φ1]]+
(28)

` [[Φ]]− + [[Φ]]− ⇒ [[Φ]]−
(29)

Unit Signature Matching: ` Φ1 ≤ Φ2

` (L11; Σ1)� (L22; Σ2) ; δ ` δΣ1 +−δΣ2 ⇒ |Σ|
` ∀α1.∃β1. (L11;L12; Σ1) ≤ ∀α2. ∃β2. (L21;L22; Σ2)

(30)

Figure 6. Higher-Order Typing Rules for MixML

14 2008/4/2

Signatures Σ ::= [[= A]] | [[τ]] | {|` : Σ|} |
∀α.Σ | ∃α.Σ1→Σ2 | $Σ

Terms e ::= . . . | Val(M)
Modules M,F ::= X | [A] | [e] | {` .X = M} | M.` |

Λα.M | F[A] |
Λ↑α. λX : Σ.M | F[β](M) |
new α in M | def α := A in M |
new(Σ) | !M | M1 := M2

Contexts ∆ ::= ∅ | ∆, α | ∆, α= A
Γ ::= ∅ | Γ,X : Σ
Ξ ::= (∆; Γ;β)

Substitutions γ ::= {X 7→M}
ξ ::= δγ

Type Effects ϕ ::= α := A

let X = M1 in M2
def
= {1 .X = M1, 2 = M2}.2

Σ1→Σ2
def
= ∃∅.Σ1→Σ2

λX : Σ.M
def
= Λ↑∅. λX : Σ.M

F(M)
def
= F[∅](M)

def α := A in M
def
= def α1 := A1 in . . .

def αn := An in M

Figure 7. IL Syntax

B. Internal Language (IL) Type System
The internal language (IL) type system is similar to the one used
for Dreyer’s RMC [7]. Here, we highlight the major differences in
the meta-theory.

Unlike RMC’s IL, we allow cyclic definitions for abstract type
variables. The IL type system remains sound, but becomes difficult
to typecheck in general (because norm∆(A) might diverge). Note
that this has no effect on decidability of MixML’s EL type system
(see Appendix D).

As a result, certain aspects of the type system become simpler.
First, we do not need to distinguish between recursive and non-
recursive type definitions, there is only one form def α := A in M
to define abstract types. Consequently, α := A is the only type
effect. Second, we do not need to track stability, so contexts need
only have one abstract type binding α, which is like α : K in RMC’s
IL (and sometimes we write it that way if we want to make the kind
K of α explicit). Third, we are able to use a linear type system to
track type variable definitions, instead of the effect system used
by RMC. Specifically, where an RMC typing judgment writes
“with β ↓” at the end, we write β as a list of distinct variables
left of the turnstile. The β lists are treated linearly, and this ensures
that variables get defined exactly once. Lastly, because we do not
distinguish opaque from transparent datatypes in the present IL,
there are no explicit fold and unfold operations on the term level.

The module new(Σ) creates an uninitialized memory cell X, of
signature $Σ, that will eventually contain a module of signature Σ.
The module M1 := M2 slides M2 (unevaluated) into the memory
cell referenced by M1. The module !M forces the computation
of the memory cell referenced by M, and backpatches it with the
result of the computation. The other modules are similar to ones in
RMC’s IL.

15 2008/4/2

Definition B.1 (Well-Formed Substitutions)
We say that a substitution ξ maps Ξ to Ξ′, written Ξ′ ` ξ : Ξ, if:

1. ξ = δγ, Ξ = (∆; Γ;β) and Ξ′ = (∆′; Γ′;β′)
2. ` Ξ and ` Ξ′

3. ∆′ ` δ : ∆
4. δβ = β′

5. dom(γ) = dom(Γ)
6. ∀X : Σ ∈ Γ. ∆′; Γ′ ` γX : δΣ

Proposition B.2 (Substitution)
Suppose Ξ′ ` ξ : Ξ, where Ξ′ = (∆′; Γ′;β′) and Ξ = (∆; Γ;β).

1. If ∆; Γ ` e : τ , then ∆′; Γ′ ` ξe : ξτ .
2. If Ξ ` M : Σ, then Ξ′ ` ξM : ξΣ.

Definition B.3 (Run-Time Module Contexts)
We say that a module context Γ is run-time if it only contains
bindings of the form X : $Σ.

Definition B.4 (Well-Formed Machine Stores)
We say that a machine store ω is well-formed in ∆ and has type Γ,
written ∆ ` ω : Γ, if:

1. ∆ ` Γ and Γ is run-time
2. dom(ω) = dom(Γ)
3. ∀X : $Σ ∈ Γ. either ω(X) = ? or ∆; Γ ` ω(X) : Σ

Definition B.5 (Well-Formed Machine States)
We say that a machine state Ω is well-formed, written ` Ω, if either:

• Ω = BlackHole
• or Ω = (∆; ω; C; e) and there exist Γ, τ , and β ⊆ ∆ s.t.:

1. ∆ ` ω : Γ
2. ∆; Γ ` e : τ

3. ∆; Γ;β ` C : τ cont
• or Ω = (∆; ω; C; M) and there exist Γ, Σ, β1] β2 ⊆ ∆ s.t.:

1. ∆ ` ω : Γ
2. ∆; Γ;β1 ` M : Σ

3. ∆; Γ;β2 ` C : Σ cont

Theorem B.6 (Preservation)
If ` Ω and Ω� Ω′, then ` Ω′.

Lemma B.7 (Canonical Forms)
Suppose ∆; Γ V : Σ and Γ is run-time.

1. If Σ = [[= A]], then V is of the form [B].
2. If Σ = [[τ ′]], then V is of the form [v′].
3. If Σ = {|` : Σ′|}, then V is of the form {`= V′}.
4. If Σ = ∀α.Σ′, then V is of the form Λα.M.
5. If Σ = ∃α.Σ1→Σ2, then V is of the form Λ↑α. λX : Σ′1.M.
6. If Σ = $Σ′, then V is of the form X.

Theorem B.8 (Progress)
If ` Ω, then Ω is not stuck.

Corollary B.9 (Type Soundness)
If ∅; ∅ ` M : Σ, then for all Ω, (∅; ∅; •; M)�∗ Ω implies that Ω
is not stuck.

16 2008/4/2

Type Effects: ∆ ` ϕ Type Effect Application: ∆ @ϕ

α : K ∈ ∆ ∆ ` A : K
∆ ` α := A

∆ @α := A
def
= ∆\{α} ∪ {α= norm∆(A)}

Terms: ∆; Γ ` e : τ

∆; Γ ` M : [[τ]]

∆; Γ ` Val(M) : τ

Modules: ∆; Γ;β ` M : Σ We write ∆; Γ ` M : Σ as shorthand for ∆; Γ; ∅ ` M : Σ.

X : Σ ∈ Γ
∆; Γ ` X : Σ

∆ ` A : K
∆; Γ ` [A] : [[= A]]

∆; Γ ` e : τ

∆; Γ ` [e] : [[τ]] ∆; Γ ` {} : {||}

∆; Γ;β1 ` M1 : Σ1 ∆; Γ,X1 : Σ1;β2 ` {` .X = M} : {|` : Σ|}
∆; Γ;β1, β2 ` {`1 .X1 = M1, ` .X = M} : {|`1 : Σ1, ` : Σ|}

∆; Γ;β ` M : {| . . . , ` : Σ, . . . |}
∆; Γ;β ` M.` : Σ

∆, α; Γ ` M : Σ

∆; Γ ` Λα.M : ∀α.Σ
∆; Γ ` F : ∀α.Σ ∆ ` A : K

∆; Γ ` F[A] : {α 7→A}Σ

∆ ` Σ1 ∆, α; Γ,X : Σ1;α ` M : Σ2

∆; Γ ` Λ↑α. λX : Σ1.M : ∃α.Σ1→Σ2

∆; Γ ` F : ∃α : K.Σ1→Σ2 β : K ⊆ ∆ ∆; Γ ` M : {α 7→β}Σ1

∆; Γ;β ` F[β](M) : {α 7→β}Σ2

∆ ` Σ
∆; Γ ` new(Σ) : $Σ

∆; Γ ` M : $Σ

∆; Γ ` !M : Σ

∆; Γ ` M1 : $Σ ∆; Γ ` M2 : Σ

∆; Γ ` M1 := M2 : {||}

∆, α; Γ;β ` M : Σ α 6∈ FV(Σ)

∆; Γ;β\α ` new α in M : Σ

∆ ` α := A ∆ @α := A; Γ;β ` M : {||}
∆; Γ;α, β ` def α := A in M : {||}

∆; Γ;β ` M : Σ′ ∆ ` Σ′ ≡ Σ

∆; Γ;β ` M : Σ

Figure 8. IL Static Semantics

17 2008/4/2

Core Values v ::= . . .
Module Values V ::= X | [A] | [v] | {`= V} | Λα.M | Λ↑α. λX : Σ.M
Machine States Ω ::= (∆; ω; C; e) | (∆; ω; C; M) | BlackHole
Machine Stores ω ::= ∅ | ω,X 7→M | ω,X 7→ ?
Continuations C ::= • | C ◦ F
Continuation Frames F ::= Val(•) | [•] | {`1 = V1, ` .X = •, `2 .X2 = M2} | •.` |

•[A] | •[α](M) | V[α](•) | !• | • := M | X := •

Machine State Transitions: Ω� Ω′

(∆; ω; C; Val(M))� (∆; ω; C ◦ Val(•); M) (∆; ω; C ◦ Val(•); [v])� (∆; ω; C; v)

e not a value
(∆; ω; C; [e])� (∆; ω; C ◦ [•]; e) (∆; ω; C ◦ [•]; v)� (∆; ω; C; [v])

M = {`1 .X1 = M1, `2 .X2 = M2} M not a value

(∆; ω; C; M)� (∆; ω; C ◦ {`1 .X1 = •, `2 .X2 = M2}; M1)

(∆; ω; C ◦ {`1 = V1, `2 .X2 = •, `3 .X3 = M3, `4 .X4 = M4}; V2)�
(∆; ω; C ◦ {`1 = V1, `2 = V2, `3 .X3 = •, `4 .X4 = {X2 7→V2}M4}; {X2 7→V2}M3)

(∆; ω; C ◦ {`1 = V1, `2 = •}; V2)� (∆; ω; C; {`1 = V1, `2 = V2})

(∆; ω; C; M.`)� (∆; ω; C ◦ •.`; M)

V = {. . . , `= V`, . . .}
(∆; ω; C ◦ •.`; V)� (∆; ω; C; V`)

(∆; ω; C; F[A])� (∆; ω; C ◦ •[A]; F) (∆; ω; C ◦ •[A]; Λα.M)� (∆; ω; C; {α 7→A}M)

(∆; ω; C; F[β](M))� (∆; ω; C ◦ •[β](M); F) (∆; ω; C ◦ •[β](M); V)� (∆; ω; C ◦V[β](•); M)

(∆; ω; C ◦ (Λ↑α. λX : Σ.M)[β](•); V)� (∆; ω; C; {α 7→β}{X 7→V}M)

α 6∈ dom(∆)

(∆; ω; C; new α in M)� (∆, α; ω; C; M)

X 6∈ dom(ω)

(∆; ω; C; new(Σ))� (∆; ω,X 7→ ?; C; X)

(∆; ω; C; !M)� (∆; ω; C ◦ !•; M)

X 7→ ? ∈ ω
(∆; ω; C ◦ !•; X)� BlackHole

X 7→M ∈ ω
(∆; ω; C ◦ !•; X)� (∆; ω; C ◦X := •; M)

X ∈ dom(ω)

(∆; ω; C ◦X := •; V)� (∆; ω@ X := V; C; V) (∆; ω; C; M1 := M2)� (∆; ω; C ◦ • := M2; M1)

X ∈ dom(ω)

(∆; ω; C ◦ • := M; X)� (∆; ω@ X := M; C; {})
α ∈ ∆

(∆; ω; C; def α := A in M)� (∆ @α := A; ω; C; M)

Figure 9. IL Dynamic Semantics

18 2008/4/2

Machine States: ` Ω

` BlackHole

∆ ` ω : Γ ∆; Γ ` e : τ ∆; Γ;β ` C : τ cont

` (∆; ω; C; e)

∆ ` ω : Γ ∆; Γ;β1 ` M : Σ ∆; Γ;β2 ` C : Σ cont β1 ∩ β2 = ∅
` (∆; ω; C; M)

Machine Stores: ∆ ` ω : Γ

∆ ` Γ dom(ω) = dom(Γ) ∀X : Σ ∈ Γ. either ω(X) = ? or ∆; Γ ` ω(X) : Σ

∆ ` ω : Γ

Continuations: ∆; Γ;β ` C : τ/Σ cont

∆ ` τ : 0/∆ ` Σ

∆; Γ; ∅ ` • : τ/Σ cont

∆; Γ;β1 ` F : τ1/Σ1 τ2/Σ2 ∆; Γ;β2 ` C : τ2/Σ2 cont

∆; Γ;β1, β2 ` C ◦ F : τ1/Σ1 cont

∆; Γ;β ` C : τ ′/Σ′ cont ∆ ` τ ′ ≡ τ : 0/∆ ` Σ′ ≡ Σ

∆; Γ;β ` C : τ/Σ cont

Continuation Frames: ∆; Γ;β ` F : τ1/Σ1 τ2/Σ2 Notation: We may omit β if β = ∅.

∆ ` τ : 0
∆; Γ ` Val(•) : [[τ]] τ

∆ ` τ : 0
∆; Γ ` [•] : τ [[τ]]

∆ ` Σ Σ = {| . . . , ` : Σ`, . . . |}
∆; Γ ` •.` : Σ Σ`

∆; Γ ` V1 : Σ1 ∆ ` Σ ∆; Γ,X : Σ;β ` {`2 .X2 = M2} : {|`2 : Σ2|}
∆; Γ;β ` {`1 = V1, ` .X = •, `2 .X2 = M2} : Σ {|`1 : Σ1, ` : Σ, `2 : Σ2|}

∆, α ` Σ ∆ ` A : K

∆; Γ ` •[A] : ∀α.Σ {α 7→A}Σ

∆; Γ ` M : {α 7→β}Σ1 ∆ ` ∃α.Σ1→Σ2

∆; Γ;β ` •[β](M) : (∃α.Σ1→Σ2) {α 7→β}Σ2

∆; Γ ` V : ∃α.Σ1→Σ2

∆; Γ;β ` V[β](•) : {α 7→β}Σ1 {α 7→β}Σ2

∆ ` Σ
∆; Γ ` !• : $Σ Σ

∆; Γ ` M : Σ

∆; Γ ` • := M : $Σ {||}
∆; Γ ` X : $Σ

∆; Γ ` X := • : Σ Σ

Figure 10. Typing Judgments for Abstract Machine

19 2008/4/2

C. Evidence Translation and Soundness
We define the dynamic semantics of MixML by translation to the
IL. The translation is given by the rules in Figures 11 and 12. The
structure of the translation rules is identical to that of the typing
rules from Section 4, except that each judgment produces an IL
term as additional output.

Figure 12 defines an erasure ()◦ from MixML semantic objects
(Figure 2) to IL signatures, by removing all locators and variance
annotations. Erasure extends pointwise to module contexts Γ. The
translation produces IL terms that correspond to the erased seman-
tic signature derived by the typing rules, i.e., the derived term serves
as evidence for the derived signature.

A structure is represented as an IL record. Atomic type compo-
nents directly map to their counterparts in the IL. Dynamic atomic
modules — i.e., values and higher-order units — are represented as
lazy cells, thereby enabling a translation of recursive linking into
an expression that backpatches uninitialized import cells with the
content of initialized output cells. We call this term the module ini-
tializer.

Consequently, a unit of signature ∀α.∃β. (L; Σ) is repre-
sented by a polymorphic initialisation function ∀α.∃β.Σ◦→{||}
in destination-passing style [9]. The function takes import types α,
export type names β, and the representation of the complete module
with all dynamic content of the export components being yet unini-
tialized. It defines the export types and fills in all dynamic content
of the export terms. The main judgment for translating modules
is thus defined relative to a path expression P, which provides a
handle to the representation of the (sub)module being defined (P
can be viewed as a reference to self).

Given these ideas, most of the evidence translation is rather
straightforward, although being in destination passing style, it no-
tably is “backward” with respect to the module it initializes. That
is, wherever the typing rules produce a smaller module from larger
operands (e.g., for projection or opaque linking), the translation
must create larger modules for use in the respective operand ini-
tializers.

The main points of interest are thus the following. Rule 47
closes an initializer over all its arguments, producing a stand-alone
unit function. Conversely, Rule 45 applies this function to initialize
a unit. Rule 46 performs the actual creation of a fresh module and
its export type names, and evaluates the initializer expression M.

New modules also have to be created in Rule 38 for projection
and Rule 40 for opaque linking, which are the two constructs that
mask parts of a larger module — the evidence expression thus must
inversely create these larger modules. Specifically, the latter rule
must locally create the combined module taking up both mod1 and
mod2, and then copy out the restricted export to the destination.
Moreover, it defines the abstract types α1 that are introduced by
the opaque linking.

Both linking rules rely on the merging rules producing evi-
dences M′1 and M′2 for projecting each of the operand modules
back out of the linked result — again in accordance with the back-
ward nature of destination passing. These submodules are then used
to initialize the operands of linking.

The only interesting bits in the evidence translation of merging
is the treatment of dynamic components. Because we allow linking
to create subtypes, it is necessary to insert a coercion function to go
back from the subtype to the supertype in the less specific operand.
This is done by creating an auxiliary cell that (lazily) applies the
coercion function obtained as evidence of the respective subtyping
judgment. In the case of units, the coercion function is created as
evidence of the signature matching rule 57.

The evidence of unit signature matching is a higher-order func-
tion taking a unit function F of the smaller type and delivering one
of the larger. To do so, the resulting function creates evidence for

an auxiliary module X of signature |Σ|, which produces the con-
nection between the smaller internal and the larger external module
signature. It also creates a fresh set of export types β1 for the origi-
nal unit F and defines its own exports β2 using the type substitution
δ derived by the typing rule. In a similar manner, substituted import
types α1 are passed to F. The most subtle feature about this part of
the translation is the use of the Copy meta-operator to wire the ex-
ports from the projected module X′2, which represents −δΣ2, back
to the destination X2 of the constructed unit function — and vice
versa the imports. Since this wiring is bidirectional — i.e., depends
on the variance of the individual components — the definition of
Copy is such that the assignment is done in the appropriate direc-
tion for each component, depending on its variance.

The following properties show that the evidence translation is
sound and complete. They are proved by mostly straightforward
simultaneous induction on the typing derivation.

Theorem C.1 (Properties of Typechecking and Translation)
Suppose ∆ ` Γ ⇑ and ∆ ` R◦ and β ⊆ ∆. Also, we assume the
following about core subtyping:

If ` τ1 ≤ τ2 and ∆ ` τ1 : 0 and ∆ ` τ2 : 0, then there exists
f such that ` τ1 ≤ τ2 ; f and ∆; ∅ ` f : τ1 → τ2.

Then:

1. If Γ ` tyc ; A, then there exists a K such that ` A : K.
2. If Γ ` tyc ; A : K, then ` A : K.
3. If Γ ` exp : τ , then there exists e such that Γ ` exp : τ ; e

and ∆; Γ◦ ` e : τ .
4. If Γ ` mod : Σ, then ∆ ` Σ ⇑ and there exists M such that

Γ ` mod : Σ ; M and ∆; Γ◦ ` M : Σ◦.
Furthermore, Γ s̀tat mod : Σ′ with stat(Σ) = stat(Σ′).

5. If Γ ` mod : Φ, then ∆ ` Φ ⇑ and there exists F such that
Γ ` mod : Φ ; F and ∆; Γ◦ ` F : Φ◦.
Furthermore, Γ s̀tat mod : Φ′ with stat(Φ) = stat(Φ′).

6. If Γ;R;β ` mod : Σ, then ∆ ` Σ ⇑ and R ⊆ Σ, and further
if ∆; Γ′; ∅ ` P : Σ◦ for some Γ′ ⊇ Γ◦ with ∆ ` Γ′, then
there exists M such that Γ;R;β ` mod : Σ ; P .M and
∆; Γ′;β ` M : {||}.
Furthermore, Γ;R;β s̀tat mod : Σ′ with stat(Σ) = stat(Σ′).

7. If Γ s̀tat mod : Σ, then ∆ ` Σ ⇑.
8. If Γ s̀tat mod : Φ, then ∆ ` Φ ⇑.
9. If Γ;R;β s̀tat mod : Σ, then ∆ ` Σ ⇑ andR ⊆ Σ.

10. If Γ ` usig ; Φ, then ∆ ` Φ ⇓.
11. If ` Σ1 + Σ2 ⇒ Σ and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇑, then

∆ ` Σ ⇑, and further if ∆; Γ′; ∅ ` P : Σ◦ for some Γ′ with
∆ ` Γ′, then there exist M1,M2 such that ` Σ1 + Σ2 ⇒ Σ ;

P .M1,M2, and ∆; Γ′ ` M1 : Σ◦1 and ∆; Γ′ ` M2 : Σ◦2.
Also, ifR1 ⊆ Σ1 andR2 ⊆ Σ2, thenR1 ∪R2 ⊆ Σ.
Furthermore, ` stat(Σ1) + stat(Σ2)⇒ stat(Σ).

12. If ` Φ1 ≤ Φ2 and ∆ ` Φ1 ⇑ and ∆ ` Φ2 ⇓, then there
exists F such that ` Φ1 ≤ Φ2 ; F and ∆; ∅ ` F : Φ1→Φ2.
Furthermore, ` stat(Φ1) ≤ stat(Φ2).

13. If ` (L1; Σ1)� (L2; Σ2) ; δ and ` Σ1 ⇑ and ` Σ2 ⇑
and ` L1 locates α1 and ` L2 locates α2, then
∆, α1, α2 ` δ : ∆ and δL1 ⊆ δΣ2 and δL2 ⊆ δΣ1.
Furthermore, ` (L1; stat(Σ1))� (L2; stat(Σ2)) ; δ.

As an additional property, we have the following:

Theorem C.2 (Substitution)
1. For all derivable judgments of the form ` J and substitutions
δ, the judgment ` δJ is derivable.

2. For all derivable judgments of the form Γ ` J and substitutions
δ, the judgment δΓ ` δJ is derivable.

20 2008/4/2

Modules: Γ;R;β ` mod : Σ ; P .M

X : Σ ∈ Γ

Γ; {||}; ∅ ` X : |Σ|; P . Copy(X,P : |Σ|)
(31)

Γ; {||}; ∅ ` {} : {||}; P . {}
(32)

` A : K
Γ; [[= A]]; ∅ ` [:K] : [[= A]] ; P . {}

(33)
Γ ` tyc ; A

Γ; {||}; ∅ ` [tyc] : [[= A]] ; P . {}
(34)

Γ ` tyc ; τ : 0

Γ; {||}; ∅ ` [:tyc] : [[τ]]− ; P . {}
(35)

Γ ` exp : τ ; e

Γ; {||}; ∅ ` [exp] : [[τ]]+ ; P . let X = [e] in P := X
(36)

Γ;R;β ` mod : Σ ; P.` .M

Γ; {|` :R|};β ` {`= mod} : {|` : Σ|}; P .M
(37)

Γ; {|` :R|};β ` mod : {|` : Σ, `′ : |Σ′||}; X .M

Γ;R;β ` mod .` : Σ ; P . let X′= Create({|`′ : |Σ′||}) in let X = {`= P, `′= X′.`′} in M
(38)

` L1 locates α1 Γ;L1]R1;β1 ` mod1 : Σ1 ; X1 .M1

` L2 locates α2 Γ,X1 : Σ1;L2]R2;β2 s̀tat mod2 : Σ2 α1, α2 fresh
` (L1; Σ1)� (L2; Σ2) ; δ Γ,X1 : δΣ1; δL2]R2;β2 ` mod2 : Σ′2 ; X2 .M2 ` δΣ1 + Σ′2 ⇒ Σ ; P .M′1,M

′
2

Γ;R1 ∪R2;β1, β2 ` (X1 = mod1) with mod2 : Σ ; P . let X1 = M′1 in let X2 = M′2 in δM1; M2

(39)

` L1 locates α1 Γ;L1;β1 ` mod1 : Σ1 ; X1 .M1

` L2 locates α2 Γ,X1 : Σ1;L2;β2 s̀tat mod2 : Σ2 β2, α2 fresh
` (L1; Σ1)� (L2; Σ2) ; δ δΓ,X1 : δΣ1; δL2;β2 ` mod2 : Σ′2 ; X2 .M2 ` δΣ1 + Σ′2 ⇒ |Σ|; X .M′1,M

′
2

Γ; {||};β1, α1 ` (X1 = mod1) seals mod2 : |Σ1|; P . new β2 in def α1 := δα1 in let X = Create(|Σ|) in
let X1 = M′1 in let X2 = M′2 in Copy(X1,P : |Σ1|); δM1; M2

(40)

Γ ` tyc ; B : K ` A : K

Γ; {|` : [[= A]]|}; ∅ ` {:`≈ tyc} : {|`= A≈B|}− ; P . {}
(41)

Γ ` tyc ; B : K ` β : K

Γ; {||};β ` {`≈ tyc} : {|`=β≈B|}+ ; P . def β :≈B in P.` in := [foldβ]; P.` out := [unfoldβ]
(42)

Γ ` mod : Φ ; F

Γ; {||}; ∅ ` [mod] : [[Φ]]+ ; P . P := F
(43)

Γ ` usig ; Φ

Γ; {||}; ∅ ` [:usig] : [[Φ]]− ; P . {}
(44)

Γ ` mod : [[∀α.∃β. (L; Σ)]]+ ; M dom(δ) = {α, β}
Γ; δL; δβ ` new mod : δΣ ; P . (!M)[δα][δβ](P)

(45)

Complete Modules and Units: Γ ` mod : Σ ; M Γ ` mod : Φ ; F

Γ; {||};β ` mod : |Σ|; X .M β fresh β 6∈ FV(Σ)

Γ ` mod : |Σ|; new β in let X = Create(|Σ|) in M; X
(46)

Γ;L;β ` mod : Σ ; X .M ` L locates α α, β fresh

Γ ` mod : ∀α.∃β. (L; Σ) ; Λα.Λ↑β. λX : Σ◦.M
(47)

Core-Language Terms: Γ ` exp : τ ; e

Γ ` mod : [[τ]]+ ; M

Γ ` Val(mod) : τ ; Val(!M)
(48)

Figure 11. Evidence Translation Rules for MixML

21 2008/4/2

Signature Merging: ` Σ1 + Σ2 ⇒ Σ ; P .M1,M2

` Σ2 + Σ1 ⇒ Σ ; P .M2,M1

` Σ1 + Σ2 ⇒ Σ ; P .M1,M2
(49) ` [[= A]] + [[= A]]⇒ [[= A]] ; P . P,P

(50)

` τ1 ≤ τ2 ; f

` [[τ1]]± + [[τ2]]− ⇒ [[τ1]]± ; P . P, lazy([f(Val(!P))] : [[τ2]])
(51)

` Φ1 ≤ Φ2 ; F

` [[Φ1]]+ + [[Φ2]]− ⇒ [[Φ1]]+ ; P . P, lazy(F(!P) : Φ2
◦)

(52)
` [[Φ]]− + [[Φ]]− ⇒ [[Φ]]− ; P . P,P

(53)

` Σ + {||} ⇒ Σ ; P . P, {}
(54)

` 6∈ `2 ` {|`1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|`3 : Σ3|}; X . {`1 = M1},M2

` {|` : Σ, `1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|` : Σ, `3 : Σ3|}; P . let X = {`3 = P.`3} in {`= P.`, `1 = M1}
let X = {`3 = P.`3} in M2

,
(55)

` Σ1 + Σ2 ⇒ Σ3 ; P.` .M1,M2 ` {|`1 : Σ′1|}+ {|`2 : Σ′2|} ⇒ {|`3 : Σ′3|}; X . {`1 = M′1}, {`2 = M′2}
` {|` : Σ1, `1 : Σ′1|}+ {|` : Σ2, `2 : Σ′2|} ⇒ {|` : Σ3, `3 : Σ′3|}; P . let X = {`3 = P.`3} in {`= M1, `1 = M′1.`1}

let X = {`3 = P.`3} in {`= M2, `2 = M′2.`2}
,

(56)

Unit Signature Matching: ` Φ1 ≤ Φ2 ; F

` (L−1 ; Σ1)� (L+
2 ; Σ2) ; δ ` δΣ1 +−δΣ2 ⇒ |Σ|; X .M1,M2

` ∀α1. ∃β1. (L−1 ;L+
1 ; Σ1) ≤ ∀α2. ∃β2. (L−2 ;L+

2 ; Σ2) ; λF : (∀α1.∃β1. (L−1 ;L+
1 ; Σ1))

◦
.Λα2.Λ

↑β2. λX2 : Σ2
◦.

new β1 in def β2 := δβ2 in let X = Create(|Σ|) in
let X′2 = M2 in Copy(X′2,X2 : Σ2); F[δα1][β1](M1)

(57)

Auxiliary Definitions:

∆ ` J def⇔ ` J ∧ FV(J) ⊆ dom(∆) (for J ∈ {A : K,Σ ⇓,Σ ⇑,Φ ⇓,Φ ⇑,Γ ⇓,Γ ⇑})

[[= A]]◦
def
= [[= A]]

([[τ]]±)
◦ def

= $[[τ]]

([[Φ]]±)
◦ def

= $Φ◦

{|` : Σ|}◦ def
= {|` : Σ◦|}

(∀α.∃β. (L1;L2; Σ))
◦ def

= ∀α.∃β.Σ◦→{||}

stat([[= A]])
def
= [[= A]]

stat([[τ]]±)
def
= {||}

stat([[Φ]]±)
def
= [[stat(Φ)]]±

stat({|` : Σ|}) def
= {|` : stat(Σ)|}

stat(∀α.∃β. (L1;L2; Σ))
def
= ∀α.∃β. (L1;L2; stat(Σ))

Create([[= A]])
def
= [A]

Create([[τ]]±)
def
= [new([[τ]])]

Create([[Φ]]±)
def
= [new(Φ◦)]

Create({|` : Σ|}) def
= {` : Create(Σ)}

Copy(P−,P+ : [[= A]])
def
= {}

Copy(P−,P+ : [[τ]]±)
def
= P± := !P∓

Copy(P−,P+ : [[Φ]]±)
def
= P± := !P∓

Copy(P−,P+ : {|` : Σ|}) def
= Copy(P−.`,P+.` : Σ)

Figure 12. Evidence Translation for Signature Merging and Matching

Synthesis Signatures: ` Σ ⇑ ` Φ ⇑

` A : K
` [[= A]] ⇑

` τ : 0

` [[τ]]± ⇑
` Φ ⇑
` [[Φ]]+ ⇑

` Φ ⇓
` [[Φ]]− ⇑

` Σ ⇑
` {|` : Σ|} ⇑

` Σ ⇑ ` L locates α L ⊆ Σ

` ∀α.∃β. (L; Σ) ⇑

Analysis Signatures: ` Σ ⇓ ` Φ ⇓

` A : K
` [[= A]] ⇓

` τ : 0

` [[τ]]± ⇓
` Φ ⇓
` [[Φ]]± ⇓

` Σ ⇓
` {|` : Σ|} ⇓

` Σ ⇓ ` L− locates α ` L+ locates β L− ⊆ Σ L+ ⊆ Σ

` ∀α.∃β. (L−;L+; Σ) ⇓

Figure 13. Synthesis and Analysis Signatures

22 2008/4/2

Template Module Signatures S ::= [[K]] | [[U]]± | {|` : S|}
Template Unit Signatures U ::= (L; K; S)
Template Type Locators L ::= [[K]] | {|` : L|}

([[= A]])T = [[K]] if ` A : K

([[τ]]±)
T

= {||}
([[Φ]]±)

T
= [[ΦT]]±

{|` : Σ|}T = {|` : ΣT|}
(∀α.∃β. (L1;L2; Σ))

T
= (LT

1 ; K; ΣT) if ` β : K

S1 + S2 = S2 + S1

S + {||} = S
[[K]] + [[K]] = [[K]]

[[U1]]± + [[U2]]− = [[U1]]±

{|` : S1, `1 : S′1|} + {|` : S2, `2 : S′2|} = {|` : S1 + S2, `1 : S′1, `2 : S′2|}
where `1 ∩ `2 = ∅

Figure 14. Template Objects and Auxiliary Definitions

3. For all derivable judgments of the form Γ;R;β ` J and substi-
tutions δ with δβ = β′ for some β′, the judgment δΓ; δR; δβ `
δJ is derivable.

(Here, C ` J is meant to include static judgments C s̀tat J ′.)

This property is not necessary for soundness, but it has the use-
ful implication that in the static pass, Rule 9 does not actually have
to check mod2 twice, because Σ′2 is already known to be deriv-
able, and equal to δΣ2. This observation decreases the complexity
of type checking.

D. Algorithmic Type Checking and Decidability
For practical purposes it is important that type checking can be
performed algorithmically. For the most part, this is easy to see for
our type system, because the typing rules for MixML are syntax-
directed. The only relevant source of non-determinism is the need
to choose appropriate new locators L and export variables β in
some of the rules.

Figure 15 specifies a straightforward algorithm for computing
suitable choices by a simple recursive pre-pass over the module
expression being checked. It returns a template signature S, which
essentially is a semantic signature with all type information erased,
and similarly, a template type locator L, in the same style. Both
are defined in Figure 14, along with a suitable erasure ()T from
semantic objects into corresponding template objects. Third, the
algorithm returns a list of kinds for the export type names of the
module (without choosing actual names).

In the rules, we write dom(S) to denote all paths defined in a
template signature or locator S. Further, we use the notation L− `s
to describe the template locator L with all subcomponents removed
whose path is in `s.

The following properties are easy to show for the algorithm,
showing that it is complete with respect to the typing judgment –
and thereby obtaining decidability of the type system.

Theorem D.1 (Completeness of Template Computation)
Suppose ` Γ ⇑ and ` L locates α. Then:

1. If Γ ` tyc ; A and ` A : K, then ΓT ` tyc ⇒ K.
2. If Γ ` tyc ; A : K, then ΓT ` tyc ⇒ K.
3. If Γ ` mod : Σ, then there exist K such that ΓT ` mod ⇒
{||}; K; ΣT.

4. If Γ;L;β ` mod : Σ, then there exist K with ` β : K such that
ΓT ` mod ⇒ LT; K; ΣT.

5. If Γ ` mod : Φ, then ΓT ` mod ⇒ UT.
6. If Γ ` usig ; Φ, then ΓT ` usig ⇒ ΦT.
7. If ` Σ1 + Σ2 ⇒ Σ, then ΣT

1 + ΣT
2 = ΣT.

23 2008/4/2

Type Constructor Templates: ΓT ` tyc ⇒ K

ΓT ` mod ⇒ {||}; K; [[K′]]

ΓT ` Tyc(mod)⇒ K′ ΓT ` α⇒ 0

α = α1, . . . , αn

ΓT ` λ(α).tyc ⇒ n ΓT ` tyc′(tyc)⇒ 0

Module Templates: ΓT ` mod ⇒ U

X : S ∈ ΓT

ΓT ` X⇒ {||}; ∅; S ΓT ` {} ⇒ {||}; ∅; {||} ΓT ` [:K]⇒ [[K]]; ∅; [[K]]

ΓT ` tyc ⇒ K

ΓT ` [tyc]⇒ {||}; ∅; [[K]]

ΓT ` [:tyc]⇒ {||}; ∅; {||} ΓT ` [exp]⇒ {||}; ∅; {||}

ΓT ` mod ⇒ L; K; S

ΓT ` {`= mod} ⇒ {|` : L|}; K; {|` : S|}
ΓT ` mod ⇒ {|` : L|}; K; {|` : S, `′ : S′|}

ΓT ` mod .`⇒ L; K; S

ΓT ` mod1 ⇒ L] L1; K1; S1 ΓT,X : S1 ` mod2 ⇒ L] L2; K2; S2 dom(L1) ∩ dom(L2) = ∅

ΓT ` (X = mod1) with mod2 ⇒ L] (L1 − dom(S2))] (L2 − dom(S1)); K1,K2; S1 + S2

ΓT ` mod1 ⇒ L; K; S ` L locates K
′

ΓT ` (X = mod1) seals mod2 ⇒ {||}; K,K
′
; S

ΓT ` tyc ⇒ K

ΓT ` {:`≈ tyc} ⇒ {|` : [[K]]|}; ∅; {|` : [[K]]|}
ΓT ` tyc ⇒ K

ΓT ` {`≈ tyc} ⇒ {||}; K; {|` : [[K]]|}

ΓT ` mod ⇒ U

ΓT ` [mod]⇒ {||}; ∅; [[U]]+
ΓT ` mod ⇒ {||}; K; [[U]]+

ΓT ` new mod ⇒ U

ΓT ` usig ⇒ U

ΓT ` [:usig]⇒ {||}; ∅; [[U]]−

Unit Signature Templates: ΓT ` usig ⇒ U

ΓT ` mod ⇒ L; ∅; S ` L− `s− locates K

`s
−

= {`s | L.`s = [[K]] ∧ prefix?(`s, `s)} `s
+

= {`s | L.`s = [[K]] ∧ ¬prefix?(`s, `s)}

ΓT ` mod import `s⇒ L− `s+
; K; S

ΓT ` mod ⇒ L; ∅; S ` L− `s− locates K

`s
−

= {`s | L.`s = [[K]] ∧ ¬prefix?(`s, `s)} `s
+

= {`s | L.`s = [[K]] ∧ prefix?(`s, `s)}

ΓT ` mod export `s⇒ L− `s+
; K; S

Type Locator Templates: ` L locates K

` L locates α LT = L ` α : K

` L locates K

Figure 15. Template Computation

24 2008/4/2

